
- •Казанский государственный архитектурно-строительный университет
- •« Краткий курс инженерной геодезии»
- •Раздел 2
- •Раздел 3
- •Раздел 4
- •Раздел 1
- •§ 1. Задачи геодезии
- •§3. Краткие сведения об истории геодезии
- •Глава 1
- •§ 4. Сведения о фигуре земли
- •§5. Системы координат, применяемые в геодезии
- •§6. Система координат гаусса-крюгера
- •§7. Системы высот в геодезии
- •Глава 2
- •§8. Азимуты, румбы, дирекционные углы и зависимости
- •§9. Приборы для ориентирования на местности
- •Глава 3
- •§10. Общие сведения о топографических материалах
- •§11. Масштабы
- •§12. Условные знаки на планах и картах
- •§ 13. Рельеф местности и способы его изображения.
- •§ 14. Классификация и номенклатура
- •§ 15. Решение задач на планах и картах
- •§ 16. Изображение земной поверхности в цифровом виде
- •Глава 4
- •§ 17. Погрешности и их виды
- •§18. Свойства случайных погрешностей
- •§19. Средняя квадратическая, предельная
- •§20.Оценка точности результатов измерений
- •§ 21. Средняя квадратическая ошибка функции
- •Раздел 2 геодезические измерения
- •Глава 5
- •Измерение длины линий
- •§ 22. Вводные сведения
- •§ 23. Механические мерные приборы
- •§24. Компарирование
- •§25. Измерение линий мерными приборами
- •§26. Вычисление длины линии
- •§ 27. Оптические дальномеры
- •§ 28. Нитяной дальномер
- •§ 29. Свето– и радиодальномеры
- •§ 30. Измерение недоступных расстояний
- •Глава 6
- •§ 31. Способы нивелирования
- •§32. Геометрическое нивелирование
- •§ 33. Классификация и устройство нивелиров и
- •§35.Поверки и юстировки нивелиров
- •§ 36. Производство нивелирования
- •Глава 7
- •§ 37. Измерение углов на местности
- •§ 38. Типы теодолитов
- •§ 39. Поверки и юстировка
- •§ 40. Измерение горизонтальных углов
- •§ 41. Измерение вертикальных углов
- •Раздел 3 топографические съемки
- •Глава 8
- •Общие сведения о государственных геодезических сетях
- •§ 42. Виды геодезических сетей
- •§ 43. Методы создания геодезических сетей
- •§ 44. Государственная плановая геодезическая сеть
- •§45. Государственная высотная геодезическая сеть
- •§ 46. Закрепление пунктов государственных
- •§ 47. Сети съемочного обоснования
- •§ 48. Основные геодезические задачи
- •§ 49. Плановые сети сгущения
- •§ 50. Съемочные плановые сети
- •§ 51. Создание высотного обоснования
- •Глава 9
- •§ 52. Сущность и виды топографических съемок
- •§ 53. Теодолитная съемка
- •§54. Сущность тахеометрическои съемки
- •§ 55. Нивелирование поверхности
- •§ 56. Нивелирование поверхности по квадратам
- •Раздел 4
- •Глава 10
- •§ 57. Общие сведения
- •§ 58. Геодезические изыскания для строительства
- •§59. Общие сведения о геодезических изысканиях
- •§ 60.Элементы круговых кривых. Вынос пикета на кривую
- •Глава 11
- •§ 61. Общие сведения о пректе производства
- •§ 62. Геодезические работы при проектировании трасс
- •§ 63. Вертикальная планировка, построение
- •Глава 12 геодезические разбивочные работы
- •§ 64. Назначение и организация разбивочных работ
- •§ 65. Основные элементы разбивочных работ
- •§ 66. Передача отметок на монтажные горизонты
- •§ 67. Способы разбивки сооружений
- •§68.Детальная разбивка горизонтальных кривых при строительстве автомобильных дорог
- •§ 69. Способы подготовки разбивочных данных
- •§ 70. Основные разбивочные работы
- •§71. Способы закрепления осей сооружения на строительной площадке
- •Глава 13 исполнительные съемки
- •§ 72. Назначение и методы исполнительных съемок
- •§73. Исполнительные съемки в строительстве
- •§ 74. Составление исполнительных генеральных планов
§ 43. Методы создания геодезических сетей
Плановое положение пунктов геодезической сети определяется методами триангуляции, трилатерации, полигонометрии, а также другими методами.
Геодезическая сеть, созданная методом триангуляции, представляет собой сеть треугольников, в вершинах которых расположены геодезические пункты; в этой сети измеряют все горизонтальные углы и некоторые из сторон – базисы (рис. 58).
Рис. 58. Методы планового обоснования:
а – триангуляция; б – трилатерация; в – полигонометрия
Измерение базисов в триангуляции с высокой точностью производят светодальномерами или другими мерными приборами.
По мере удаления от базиса, измеренного в начале сети триангуляции, точность определения сторон треугольников понижается. Для повышения точности и контроля в конце ряда треугольников измеряют еще один базис.
Для связи сети триангуляции с уже созданными геодезическими сетями, в развивающуюся триангуляцию должны быть включены пункты из ранее созданных сетей.
Для того, чтобы в триангуляции было принципиально возможным определение положения смежных пунктов, необходимо в каждом треугольнике измерять два угла, а в сети треугольников иметь всего один базис, дирекционный угол одного направления и координаты одного пункта. Однако число измерений всегда больше необходимого количества. Так, в ряду триангуляции на рис. 58, а измеряют все три угла в каждом треугольнике, две базисные стороны b1 и b2, два дирекционных угла направлений αнач,αкон, а также включают два пункта А и В с известными координатами Х, У. Наличие избыточных измерений дает возможность произвести вычислительную обработку измерений с применением специальных математических методов, называемую уравниванием измеренных величин.
Метод трилатерации состоит в определении планового положения вершин треугольников, в которых расположены геодезические пункты, измерением длин всех сторон треугольников и одного горизонтального угла.
В настоящее время в связи с широким использованием светодальномеров метод трилатерации получает все более широкое применение.
В сетях трилатерации для определения координат пунктов необходимо производить измерения трех сторон в треугольнике, в то время как в триангуляции необходимых измерений два, а производят измерения трех углов. Отсутствие лишних (избыточных) измерений в трилатерации приводит к невозможности контроля измерений и повышения их точности путем уравнивания.
Поэтому для повышения точности в трилатерации измеряют длины диагоналей, соединяющие вершины смежных треугольников. Именно поэтому ряды трилатерации состоят из геодезических четырехугольников, центральных систем или их комбинаций (рис. 58, б).
Метод полигонометрии состоит в построении геодезической сети путем измерения расстояний и горизонтальных углов между пунктами. Метод полигонометрии для развития геодезической сети широко применяется в закрытой (залесенной, застроенной) местности.
На рис. 58, в приведена схема полигонометрического хода. В ходе измерены длины всех сторон d1, d2, ..., d5 и все горизонтальные углы β1, β2, ..., β6. Углы могут измеряться по ходу лежащие как справа, так и слева.
Возможно построение геодезических плановых сетей комбинированием трех перечисленных методов. Созданные таким методом сети называются линейно-угловыми. При их создании сочетают линейные и угловые измерения, что является наиболее надежным приемом. Одним из примеров построения линейно-угловых сетей является четырехугольники без диагоналей.
Рис. 59 Космический метод определения
положения пунктов на земной поверхности
В необжитых районах плановая геодезическая сеть может развиваться астрономическим методом. Астрономический метод состоит в определении широты φ и долготы λ по наблюдениям звезд и Солнца и перехода от координат φ и λ. по определенным математическим зависимостям к координатам Х и У.
С развитием практической космонавтики получил жизнь новый метод определения положения геодезических пунктов – метод космической геодезии. Если в один и тот же момент времени из точек А и В на земной поверхности (рис. 59) с известными координатами и из точки К, координаты которой требуется определить, измерить углы на точки Sl и S2, в которых находятся искусственные спутники Земли, то можно вычислить сначала координаты спутника в точках S1, и S2, а затем искомые координаты пункта К.
Высотное положение пунктов геодезической сети определяют различными методами нивелирования в зависимости от назначения и требуемой точности положения пунктов по высоте. Назад