Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Термех.doc
Скачиваний:
71
Добавлен:
28.04.2019
Размер:
1.61 Mб
Скачать
  1. Количество движения материальной точки и механической системы. Элементарный и полный импульс силы.

Количеством движения точки называется векторная величина m равная произведению массы точки на вектор ее скорости. Направлен вектор т так же, как и скорость точки, т. е. по каса­тельной к ее траектории.

Количеством движения системы материальных точек называется векторная сумма количеств движений отдельных точек системы.

Единицей измерения количества движения в СИ является –

Количество движения системы можно выразить через массу системы и скорость центра масс.

Элементарный и полный импульс силы

Действие силы на материальную точку в течении времени можно охарактеризовать элементарным импульсом силы .

Полный импульс силы за время , или импульс силы , определяется по формуле . (Полный интеграл за время от элементарного импульса).

В частном случае, если сила постоянна и по величине , и по направлению ( ), .

Проекции импульса силы на прямоугольные декартовы оси координат равны:

Единицей измерения импульса в СИ является –

  1. Теорема об изменении количества движения точки и системы в дифференциальной и интегральной формах. Следствия.

Эта теорема существует в трех различных формах.

Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих на систему.

, (6.1)

Доказательство: Теорема об изменении количества движения для точки имеет вид:

,

Сложим все уравнений и получим:

,

что и требовалось доказать.

В проекциях на оси координат это утверждение выглядит так:

, , .

Теорема. (в дифференциальной форме). Дифференциал от количества движения системы равен сумме элементарных импульсов всех внешних сил, действующих на систему.

Умножим левую и правую части уравнения (6.1) на и получим

, (6.2)

В проекциях на оси координат это утверждение выглядит так:

, , .

Теорема (в интегральной форме). Изменение количества движения системы за какой-либо промежуток времени равно векторной сумме элементарных импульсов всех внешних сил, действующих на систему за этот же промежуток времени.

Интегрируя обе части уравнения (**) по времени в пределах от нуля до получаем:

В проекциях на оси координат это утверждение выглядит так:

, , .

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например Оx) равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы.