
- •Метод обратной матрицы.
- •11. Теорема и формулы Крамера решения системы п линейных уравнений с п переменными (без вывода).
- •Решение системы линейных уравнений с неизвестными
- •12. Понятие функции, способы задания функций. Область определения. Четные и нечетные, ограниченные, монотонные функции. Примеры. Понятие функции одной переменной
- •Способы задания функций:
- •Основные свойства функций
- •13. Понятие элементарной функции. Основные элементарные функции и их графики (постоянная, степенная, показательная, логарифмическая). Элементарная функция
- •Основные элементарные функции
- •14. Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести). Уравнение линии на плоскости
- •Взаимное расположение двух линий
- •Уравнение прямой на плоскости
- •Уравнение прямой, проходящей через заданную точку в данном направлении
- •Уравнение пучка прямых Уравнение прямой в отрезках
- •Общее уравнение прямой и его исследование
- •Точка пересечения прямых
- •15. Общее уравнение прямой на плоскости, его исследование. Условия параллельности и перпендикулярности прямых. Общее уравнение прямой и его исследование
- •Условия параллельности и перпендикулярности двух прямых:
- •16. Предел последовательности при и предел функции при . Признаки существования предела (с доказательством теоремы о пределе промежуточной функции). Предел числовой последовательности
- •Предел функции в бесконечности и в точке
- •Признаки существования предела
- •17. Определение предела функции в точке. Основные теоремы о пределах (одну из них доказать). Предел функции в точке
- •Основные теоремы о пределах. Признаки существования предела
- •Предел алгебраической суммы конечного числа функций равен такой же сумме пределов этих функций, т.Е.
- •Предел произведения конечного числа функций равен произведению пределов этих функций, т.Е.
- •Предел частного двух функций равен частному пределов этих функций (при условии, что предел делителя не равен нулю), т.Е.
- •Бесконечно большие величины
- •Свойства бесконечно больших величин
- •Связь между бесконечно малыми и бесконечно большими величинами
- •19. Второй замечательный предел, число е. Понятие о натуральных логарифмах. Второй замечательный предел.
- •20. Непрерывность функции в точке и на промежутке. Свойства функций, непрерывных на отрезке. Точки разрыва. Примеры. Непрерывность функции
- •Свойства функций, непрерывных в точке
- •1. Если функции и непрерывны в точке , то их сумма , произведение и частное (при условии ) являются функциями, непрерывными в точке .
- •2. Если функция непрерывна в точке и , то существует такая окрестность точки , в которой .
- •Точки разрыва функции
- •Свойства функций, непрерывных на отрезке
- •21. Производная и ее геометрический смысл. Уравнение касательной к плоской кривой в заданной точке. Определение производной
- •Задача о касательной
- •22. Дифференцируемость функций одной переменной. Связь между дифференцируемостью и непрерывностью функции (доказать теорему). Понятие дифференцируемости функции
- •Связь между дифференцируемостью функции и ее непрерывностью
- •23. Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
- •Основные правила дифференцирования
- •Производная алгебраической суммы конечного числа дифференцируемых функций равна алгебраической сумме производных этих функций, т.Е.
- •5. Производная частного двух дифференцируемых функций может быть найдена по формуле
- •24. Формулы производных основных элементарных функций (одну из формул вывести). Производная сложной функции. Производные основных элементарных функций (таблица производных)
- •Производная сложной функции
- •25. Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.
- •27. Определение экстремума функции одной переменной. Необходимый признак экстремума (доказать).
- •29. Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.
- •30. Общая схема исследования функций и построения их графиков. Пример.
- •31. Функции нескольких переменных. Примеры. Частные производные (определение). Экстремум функции нескольких переменных и его необходимые условия. Основные понятия. Частные производные
- •Частные производные функции двух переменных
- •Экстремум функции двух переменных
- •35. Метод замены переменной в неопределенном интеграле и особенности применения этого метода при вычислении определенного интеграла.
- •36. Метод интегрирования по частям для случаев неопределенного и определенного интегралов (вывести формулу). Примеры.
- •Методы вычисления определенного интеграла
- •37. Определенный интеграл как предел интегральной суммы. Свойства определенного интеграла.
- •Геометрический смысл определенного интеграла.
- •Экономический смысл определенного интеграла.
- •Свойства определенного интеграла
- •38. Теорема о производной определенного интеграла по переменному верхнему пределу. Формула Ньютона—Лейбница. Определенный интеграл с переменным верхним пределом
- •Формула Ньютона-Лейбница.
- •40. Вычисление площадей плоских фигур с помощью определенного интеграла. Примеры.
- •41. Понятие о дифференциальном уравнении. Общее и частное решения. Задача Коши. Задача о построении математической модели демографического процесса.
- •Задача о построении математической модели демографического процесса. Задача Коши
- •42. Простейшие дифференциальные уравнения 1-го порядка (разрешенные относительно производной, с разделяющимися переменными) и их решение. Примеры.
- •Рассмотрим некоторые типы дифференциальных уравнений 1-го порядка.
- •Неполные дифференциальные уравнения 1-порядка.
- •Дифференциальные уравнения 1-го порядка с разделяющимися переменными.
27. Определение экстремума функции одной переменной. Необходимый признак экстремума (доказать).
Определение.
Точка
называется точкой
максимума функции
,
если существует некоторое число
такое, что для всех
,
удовлетворяющих условию
,
выполнено неравенство
.
Максимум функции – это значение функции в точке максимума.
На
рис 5 показан пример графика функции,
имеющей максимумы в точках
.
О
.
На рис 5 функция имеет минимум в точке
.
Для максимумов и минимумов есть общее название – экстремумы. Соответственно точки максимума и точки минимума называются точками экстремума.
Очевидно, что функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.
В точках экстремума у производной есть особые свойства.
Теорема
(необходимое условие экстремума).
Пусть в точке
функция
имеет экстремум. Тогда либо
не существует, либо
.
Доказательство.
Предположим,
что функция
имеет в точке
максимум.
Тогда при достаточно
малых
при любом знаке
верно неравенство:
,
т.е.
.
Тогда:
и
.
По определению
производной в точке
:
(если такой предел существует). Т.е. если
,
но
,
то
,
а если
,
но
,
то
.
Возможно это только в тех случаях, если
или если
не существует. Теорема
доказана.
Те точки из области
определения функции, в которых
не существует или в которых
,
называются критическими
точками функции.
Таким образом, из только что доказанной теоремы следует, что точки экстремума лежат среди критических точек. В общем случае критическая точка не обязана быть точкой экстремума. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум.
П
.
Имеем
,
но точка
не является точкой экстремума (см. рис
6).
29. Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.
Определение.
Асимптотой графика функции
называется прямая, обладающая тем
свойством, что расстояние от точки
до этой прямой стремится к нулю при
неограниченном удалении точки графика
от начала координат.
Различают вертикальные (рис. 6.6 а), горизонтальные (рис. 6.6 б) и наклонные (рис. 6.6 в) асимптоты.
На рис. 6.6а изображена вертикальная асимптота.
На рис 6.6б – горизонтальная асимптота.
На рис. 6.6в – наклонная асимптота.
Теорема
1. В точках
вертикальных асимптот (например,
)
функция
терпит разрыв, ее предел слева и справа
от точки
равен
:
и (или)
.
Теорема 2. Пусть функция определена при достаточно больших и существуют конечные пределы
и
.
Тогда прямая является наклонной асимптотой графика функции .
Теорема
3. Пусть
функция
определена при достаточно больших
и существует предел функции
.
Тогда прямая
есть горизонтальная асимптота графика
функции
.
Горизонтальная
асимптота является частным случаем
наклонной асимптоты, когда
.
Поэтому, если в каком-либо направлении
кривая имеет горизонтальную асимптоту,
то в этом направлении нет наклонной, и
наоборот.
Пример.
Найти
асимптоты графика функции
.
Решение. В точке функция не определена, найдем пределы функции слева и справа от точки :
;
.
Следовательно, - вертикальная асимптота.
|
Найдем наклонную асимптоту:
Таким образом,
|