Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры мех.docx
Скачиваний:
8
Добавлен:
14.04.2019
Размер:
2.18 Mб
Скачать

52. Гармонический анализ периодических движений.

а) Колебания прямоугольной формы. Колебания прямоугольной формы (рис. 110) могут быть представлены функцией

, в промежутке и в промежутке , т.е. функция в данном

с

Рис.108

лучае является нечётной. Вне указанного промежутка функция повторяется с периодом , является периодической.

Т

Рис.110

ак как исследуемая функция является нечётной, то в соответствии с (347) постоянный член разложения Фурье равен

(348)

Из соотношения (343)определяем коэффициенты Фурье :

(349)

Коэффициенты Фурье определяются из (344):

Как видно, коэффициенты принимают различные значения в зависимости от номера члена ряда (номера гармоники). Для нечётных гармоник (нечётных значений k)

(350)

а для четных

(351)

Учитывая полученные значения коэффициентов разложения в ряд Фурье (348), (349), и (350), можно окончательно записать ряд Фурье для колебаний прямоугольной формы в виде

(352)

Заметим, что разложение Фурье для этого случая состоит только из нечётных гармоник, амплитуды которых уменьшаются обратно пропорционально номеру гармоники.

53. Гармонический анализ периодических движений.

б) Колебания пилообразной формы

Периодические колебания пилообразной формы, представленные на рис. 111, можно описать функцией , определяемой в промежутке . При других значениях аргумента функция повторяется с периодом .

Рис.111

Как видно, , т.е. функция является нечётной, поэтому из (347) следует, что

(352).

Коэффициенты Фурье определяется в соответствии с (343)

(353).

Значение интеграла удобно находить по правилу интегрирования по частям. По этому правилу, если подынтегральное выражение можно представить в виде , то с точностью до постоянной интегрирования можно записать:

(354).

Полагая и , находим далее, что , а . Используя правило (354) интегрирования по частям, можно записать, что (с точностью до постоянной интегрирования)

(355).

Учитывая это, значения коэффициентов в форме (353) перепишем в виде

(356).

Коэффициенты определяются из (354):

(357).

Интегралы записанного вида также удобно находить по правилу интегрирования по частям. В этом случае полагаем . Учитывая это, получаем далее, что .

55.1. Упругие волны.

Рассмотренные в разделе "Колебательное движение" колебательные системы могут служить моделью основной части источника или приёмника упругих колебаний. Теперь обратимся к изучению процесса распространения колебаний, передачи колебательного процесса от источника колебаний к приёмнику.

Изучая колебания различных колебательных систем, мы, как правило, не учитываем тех изменений, которые колебательная система производит в окружающей её среде. Между тем, колеблющееся тело, отклоняясь от положения равновесия, вызывает деформации ок­ружающего его участка среды и, соответственно, упругие напряжения. Силы упругости в деформированном участке среды действуют как на колеблющееся тело, так и на частицы слоев среды, граничащих с деформированным. Под действием упругих сил частицы со­вершают движение в соответствии с законами динамики. Таким образом колебательный процесс, возбуждаемый колеблющимся телом, начинает распространяться в среде. При периодических колебаниях источника периодическими будут и колебания различных частиц среды около их положений равновесия. С течением времени в колебательный процесс вовлекаются всё более и более удалённые от источника частицы среды. Такой процесс и называют обычно волновым, а изменяющиеся с течением времени периодические деформации среды - волной. Более того, даже если источник возмущений в среде является импульсным, а не периодическим, процесс распространения возмущений в среде всё равно называют волновым. Следовательно, для распространения колебаний, возбуждаемых источником, необходимо наличие упругой среды. Здесь и далее рассматриваются только упругие волны, хотя волновым процессом можно описывать и изменения в пространстве с течением времени и других по природе физических величин, например, температуры (для температурных или тепловых волн), напряженности электрического поля для электро­магнитных волн и т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]