Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ИМА Материал для зачета 2011.doc
Скачиваний:
28
Добавлен:
21.12.2018
Размер:
777.22 Кб
Скачать
      1. Кулонометрическое титрование.

    1. Кондуктометрия

Все ранее рассмотренные методы анализа основаны на протекании электродных реакций либо в отсутствие внешнего тока (потенциометрия), либо под током - вольтамперометрия, кулонометрия, электрогравиметрия. В отличие от них кондуктометрия является методом, в котором электрохимические реакции либо не протекают вовсе, либо являются вспомогательными и не учитываются. В связи с этим в кондуктометрии важнейшее значение приобретает одно из свойств растворов электролитов - электропроводность. В качестве аналитического сигнала в кондуктометрии могут быть использованы изменение сопротивления электролита, изменение полного переходного сопротивления границы электрод - электролит или общее изменение сопротивления электролитической ячейки.

      1. Электрическая проводимость растворов электролитов.

Мерой способности веществ проводить электрический ток является электрическая проводимость G - величина, обратная электрическому сопротивлению R. Так как

,

то

,

где - удельное электрическое сопротивление, Ом ∙ см;

S – площадь поперечного сечения проводника, см2;

l - длина проводника, см;

 - удельная электрическая проводимость.

Удельная электрическая проводимость раствора электролита (См ∙ см-1 - Сименс на см) - это электрическая проводимость объема раствора, заключенного между двумя параллельными электродами, имеющими площадь по 1 см2 и расположенными на расстоянии 1 см друг от друга

Удельная электрическая проводимость раствора электролита определяется количеством ионов, переносящих электричество, и скоростью их миграции.

Движение ионов в электрическом поле. Числа переноса.

В растворе электролита сольватированные ионы находятся в беспорядочном тепловом движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам - миграция (перенос). Ионы движутся под действием силы, сообщающей им ускорение, но одновременно с возрастанием скорости их движения увеличивается сопротивление среды. Поэтому через некоторый промежуток времени скорость движения ионов становится постоянной.

Для ионов i-го вида скорость движения в электрическом поле определяется силой, действующей на ион, которая равна произведению заряда иона на градиент потенциала поля, и фактором R, характеризующим сопротивление среды и зависящим от температуры раствора, природы иона и растворителя:

, (1)

где e - элементарный электрический заряд (заряд электрона);

zi - количество элементарных электрических зарядов, которое несет один ион (зарядность иона);

U - разность потенциалов между электродами, В;

l - расстояние между электродами;

R – активное электрическое сопротивление среды направленному перемещению ионов.

Скорость движения ионов при градиенте потенциала поля, равном 1 В/м называется электрической подвижностью ионов ui (размерность м2/В∙с):

, т.е. . (2)

Каждый вид ионов переносит определенное количество электричества, зависящее от заряда, концентрации ионов и скорости их движения в электрическом поле. Для оценки доли участия данного вида ионов в переноске электричества Гитторфом введено понятие числа переноса. Число переноса ионов i-го вида - отношение количества электричества qi, перенесенного данным видом ионов, к общему количеству электричества q, перенесенному всеми ионами, находящимися в растворе:

ti = qi/q. ti = 1

Сумма чисел переноса всех видов ионов в растворе равна единице.

Для бинарного электролита КА, диссоциирующего на два вида ионов К+ и А-

КА = К+ + А-,

количество электричества, перенесенного катионами и анионами:

q+ = ez+c+u+; q- = ez-c-u-,

где z+, z- - заряд катиона и аниона;

c+, c- - концентрация;

u+, u- - электрическая подвижность ионов.

Так как раствор электролита электронейтрален, то для бинарного электролита можно записать

z+c+ = z-c-,

и

t+ = u+/(u+ + u-); t- = u-/(u+ + u-).

В водном растворе электролита происходит гидратация (в общем случае - сольватация) ионов.

+

Размеры образовавшихся частиц определяются размерами ионов и степенью их гидратации. Ионы с высокой степенью гидратации обладают меньшей электрической подвижностью, чем слабогидратированные ионы.

Допустим, что между электродами, расположенными друг от друга на расстоянии l (см), к которым приложена разность потенциалов U (В), находится раствор электролита, содержащий несколько видов ионов. Для ионов i-го вида: концентрация ci, зарядность zi, скорость движения в электрическом поле vi. За 1 с через поперечное сечение S (см2) раствора, находящегося между электродами, мигрирует civiS ионов i-вида, которые переносят ziFciviS электричества. Все виды ионов в растворе переносят zi F ci vi S (Кл). Учитывая, что количество электричества, проходящее через проводник за 1 с, соответствует силе тока, получим:

I = F S zi ci vi. (3)

Сочетание уравнений 1-3 дает:

.

В соответствии с законом Ома

.

Для удельной электрической проводимости получаем

= F zi ci vi.

Для раствора бинарного электролита при концентрации с (экв/см3) и степени диссоциации имеем:

= c F (z+u+ + z-u-). (4)

где - степень диссоциации электролита,

с - эквивалентная концентрация электролита,

z- и u - заряд и скорость движения (м/с) катионов и анионов соответственно при напряженности электрического поля 1 В/см.

Эквивалентная электропроводность

Электропроводность электролитов удобнее относить к числу эквивалентов растворенного вещества, поэтому введено понятие эквивалентной электропроводности. Эквивалентной электропроводностью называется электропроводность объема раствора, заключенного между параллельными электродами, расположенными на расстоянии 1 см друг от друга и имеющими такую площадь, чтобы между ними содержался 1 экв. вещества (или удельная эквивалентность, отнесенная к числу эквивалентов вещества в 1 см3 раствора, заключенного между двумя электродами площадью 1 см2 каждый и находящихся на расстоянии 1 см). Размерность эквивалентной электропроводности – См ∙ см2 ∙ экв-1. Удельная и эквивалентная электропроводности связаны между собой соотношением:

= 1000/c,

где с -концентрация электролита, экв/л.

Молярная электрическая проводимость

Молярная электрическая проводимость раствора - мера электрической проводимости всех ионов, образующихся при диссоциации 1 моль электролита при данной концентрации. Она численно равна электрической проводимости объема V 3) раствора, заключенного между двумя параллельными электродами с межэлектродным расстоянием 1 м, причем каждый электрод имеет такую площадь, чтобы в этом объеме содержался 1 моль растворенного вещества. Между молярной и удельной электрической проводимостью имеется соотношение

= V = /c,

где - молярная электрическая проводимость, См ∙ м2 ∙ моль-1;

 - удельная электрическая проводимость, См ∙ м-1;

V - разведение раствора, м3 ∙ моль-1;

с - концентрация, моль ∙ м-3.

Если концентрация выражена в моль/л, то уравнение записывается в виде

= 10-3/c. (5)

Из уравнений (4) и (5) следует

= z F(u+ + u-). (6)

Молярная электрическая проводимость при данной концентрации c всегда меньше электрической проводимости бесконечно разбавленного раствора, в котором отсутствуют силы межионного взаимодействия:

c = - (e + r),

где e - электрофоретическое торможение, возникающее в результате того, что ион, рассматриваемый как центральный, и его сольватная оболочка, обладающие обратными по знаку зарядами, движутся в противоположных направлениях;

r - релаксационное торможение, обусловленное тем, что при движении иона в электрическом поле симметрия его ионной атмосферы (сольватной оболочки) нарушается в результате разрушения ионной атмосферы в одном положении и формирования ее в другом, новом положении. Этот процесс происходит с конечной скоростью в течение некоторого времени, которое называется временем релаксации.