
- •Теория строительного материаловедения
- •Глава 1 Общие сведения о строительном материаловедении
- •1.1. Некоторые исходные понятия
- •1.2. Исторические этапы развития строительного материаловедения
- •1.3. Теория искусственных строительных конгломератов
- •1.3.1. Классификация строительных материалов
- •1.3.2. Составные части общей теории иск
- •Глава 2 Теория структурообразования и оптимизации структуры иск (теоретическая технология)
- •2.1. Сырьевые материалы, поступающие на переработку в иск
- •2.2. Основные процессы в технологии строительных материалов
- •2.2.1. Подготовительные работы
- •2.2.2. Перемешивание отдозированных компонентов смеси
- •2.2.3. Формование и уплотнение изделий из смеси
- •2.2.4. Обработка отформованных изделий
- •2.2.5. Общая теория отвердевания матричных веществ в иск
- •2.3. Структура строительных материалов и изделий
- •Глава 3 Теория прочности, деформативности и конгруэнции свойств
- •3.1. Основные свойства строительных материалов
- •3.1.1. Механические свойства
- •3.1.2. Физические свойства
- •3.1.4. Технологические свойства
- •3.1.5. Оценка качества материалов
- •3.2. Основные закономерности при оптимальных структурах иск
- •3.2.1. Закон створа1
- •3.2.2. Закон и формулы прочности иск оптимальной структуры
- •3.2.3. Закон конгруэнции свойств
- •3.2.4. Деформационные свойства иск оптимальной структуры
- •3.3. Подобие оптимальных структур и две теоремы в теории иск
- •3.4. Научные принципы и общий метод проектирования состава иск оптимальной структуры
- •3.5. Корректирование проектного состава иск
- •3.6. Создание новых строительных конгломератов
- •3.7. Оценка технико-экономической эффективности иск оптимальной структуры
- •Глава 4 Теория долговечности иск в конструкциях
- •4.1. Общие понятия о долговечности материалов
- •4.2. Временные элементы долговечности материала
- •4.3. Критические уровни ключевых характеристик структуры и свойств
- •4.4. Теоретические расчеты долговечности и принятые в них ограничения
- •4.5. Некоторые вопросы надежности материала в конструкциях
- •Глава 5 Элементы теории методов научного исследования и технического контроля качества
- •Глава 6 Введение в практическую технологию
- •6.1. Основные компоненты и разновидности производственных технологий
- •6.2. Связь производственных процессов с общей теоретической технологией
- •6.3. Прогрессивные технологии в строительном материаловедении
- •6.3.1. Смысловые и количественные критерии
- •6.4. Оптимизирующие факторы при совершенствовании технологий до уровня прогрессивных
- •Практика строительного материаловедения (строительные материалы и изделия)
- •А. Природные строительные материалы и изделия
- •Глава 7 Древесина и древесные строительные материалы
- •7.1. Общие сведения
- •7.2. Состав, структурные элементы и свойства древесины
- •7.3. Анатомическое строение древесины
- •7.4. Качественные показатели древесных материалов
- •7.5. Пороки древесины
- •7.6. Защита древесины от гниения, поражения насекомыми и возгорания
- •7.7. Модификация древесины
- •7.8. Древесные породы в строительстве
- •7.9. Материалы и строительные изделия из древесины
- •7.10. Использование древесных отходов
- •Глава 8 Природные каменные материалы и изделия1
- •8.1. Общие сведения
- •8.2. Породообразующие минералы
- •8.3. Горные породы, применяемые в строительстве
- •8.4. Энергетическая активность минералов и горных пород
- •8.5. Закономерности свойств природного камня
- •8.6. Добыча и обработка природного камня
- •8.7. Материалы и изделия из горных пород
- •8.8. Защита природного камня в конструкциях
- •Б. Искусственные строительные материалы и изделия
- •1. Безобжиговые искусственные конгломераты
- •Глава 9 Строительные конгломераты на основе неорганических вяжущих веществ
- •9.1. Цементный камень как матричная часть в конгломератах и исходные компоненты
- •9.1.1. Вода и водные растворы
- •9.1.2. Неорганические вяжущие вещества
- •9.1.3. Воздушные вяжущие вещества и их производство
- •9.1.4. Гидравлические вяжущие вещества и их производство
- •9.1.5. Смешанные цементы как разновидности комплексных вяжущих веществ
- •9.2. Взаимодействие воды или водных растворов с неорганическими вяжущими веществами и процессы твердения
- •9.3. Заполняющие компоненты в конгломератах и добавки, вводимые в смеси
- •9.3.1. Заполнители неорганические
- •9.3.2. Заполнители органические
- •9.3.3. Наполнители
- •9.3.4. Добавочные вещества (добавки)
- •9.4. Основные разновидности строительных конгломератов
- •9.4.1. Общие сведения о бетонах
- •9.4.2. Тяжелые (обычные) бетоны
- •9.4.3. Легкие бетоны
- •9.4.4. Ячеистые бетоны
- •9.4.5. Арболиты (деревобетоны)
- •9.4.6. Специальные бетоны
- •9.5. Железобетон — изделия, конструкции
- •9.5.1. Общие сведения
- •9.5.2. Исходные материалы для железобетона
- •9.5.3. Производство сборных железобетонных изделий и конструкций
- •9.5.4. Технологические схемы изготовления сборных железобетонных изделий
- •9.5.5. Технология монолитного железобетона
- •9.5.6. Технический контроль и хранение железобетонных изделий
- •9.6. Разновидности других материалов и изделий на основе неорганических вяжущих веществ
- •9.6.1. Строительные растворы Общие сведения.
- •9.6.2. Сухие строительные смеси
- •9.6.3. Гипсовые и гипсобетонные изделия
- •9.7. Силикатные изделия автоклавного твердения
- •9.7.1 Общие сведения о силикатных материалах
- •9.7.2. Силикатный (известково-песчаный) кирпич
- •9.7.3. Известково-шлаковый и известково-зольный кирпич
- •9.7.4. Силикатные бетоны
- •9.7.5. Силикатные изделия ячеистой структуры
- •9.8. Асбестоцементные изделия
- •9.8.1. Общие понятия
- •9.8.2. Краткие сведения об исходных материалах
- •9.8.3. Основы производства асбестоцементных изделий
- •9.8.4. Продукция асбестоцементных заводов
- •9.8.5. Основные свойства асбестоцементных изделий
- •9.9. Строительные материалы на основе магнезиальных вяжущих веществ
- •9.10. Коррозия строительных конгломератов в эксплуатационных условиях
- •Глава 10 Искусственные строительные конгломераты на основе органических вяжущих веществ
- •10.1. Основные исходные материалы для получения иск
- •10.1.1. Битумы
- •10.1.2. Дегти
- •10.1.3. Отвердевание битумов и дегтей
- •10.1.4. Минеральные наполнители в качестве асфальтирующих добавок
- •10.1.5. Формирование асфальтового вяжущего вещества
- •10.2. Заполняющие компоненты в иск на основе органических вяжущих веществ
- •10.3. Основные разновидности иск на основе органических вяжущих веществ
- •10.3.1. Асфальтовые бетоны
- •10.3.2. Разновидности асфальтовых бетонов
- •10.3.3. Дегтебетоны
- •10.4. Деструкция асфальтобетона при эксплуатации покрытий
- •Глава 11 Строительные конгломераты на основе органических полимеров и пластмассы
- •11.1. Природные и искусственные органические полимеры
- •11.1.1. Полимеризационные полимеры (термопласты)
- •11.1.2 Поликонденсационные полимеры (реактопласты)
- •11.2. Наполнители, заполнители и добавочные вещества в иск
- •11.3. Основные технологические операции
- •11.4. Отверждение полимерных и наполненных вяжущих веществ
- •11.5. Разновидности искусственных полимерных конгломератов и пластических масс
- •11.5.1. Полимербетоны и полимеррастворы
- •11.5.2. Полимерные строительные материалы и изделия
- •11.5.3. Материалы для санитарно-технического оборудования и трубы
- •11.5.4. Отделочные полимерные материалы и изделия
- •11.5.5. Гидроизоляционные и герметизирующие материалы
- •11.6. Старение и деструкция полимерных материалов
- •Глава 12 Строительные конгломераты с применением комплексных вяжущих веществ
- •12.1. Конгломератные материалы на основе смешанных вяжущих веществ
- •12.2. Материалы и изделия на основе компаундированных и комбинированных вяжущих веществ
- •Глава 13 Теплоизоляционные материалы и изделия
- •13.1. Общие сведения
- •13.2. Способы поризации материалов
- •13.3. Неорганические теплоизоляционные материалы и изделия
- •13.4. Органические теплоизоляционные материалы и изделия
- •13.5. Полимерные теплоизоляционные материалы
- •Глава 14 Акустические материалы и изделия
- •14.1. Общие сведения
- •14.2. Звукопоглощающие материалы
- •14.3. Звукоизоляционные материалы и изделия
- •Глава 15 Гидроизоляционные материалы и изделия
- •15.1. Общие сведения
- •15.2. Жидкие гидроизоляционные материалы
- •15.3. Пластично-вязкие гидроизоляционные материалы
- •15.4. Упруго-вязкие и твердые кровельные и гидроизоляционные материалы и изделия
- •Глава 16 Материалы для отделочных работ: краски, лаки, обои
- •16.1. Общие сведения
- •16.2. Исходные основные связующие и вспомогательные вещества для лакокрасочных материалов
- •16.3. Пигменты в красочных составах
- •16.4. Основные разновидности красочных веществ
- •16 5. Антикоррозионная защита полимерными материалами
- •16.6. Обои для отделки стен
- •2. Обжиговые искусственные конгломераты
- •Глава 17 Керамические материалы и изделия
- •17.1. Общие сведения
- •17.2. Глина — основное сырье для строительной керамики
- •17.3. Краткие сведения из технологии керамики
- •17.4. Структура и природа свойств керамических материалов
- •17.5. Керамические материалы и изделия
- •Глава 18 Стеклянные и другие плавленые материалы и изделия
- •18.1. Значение стеклянных изделий в строительстве
- •18.2. Состав и строение стекол
- •18.3. Свойства стекол
- •18.4. Основы производства стекла
- •18.5. Стеклянные материалы и изделия
- •18.6. Материалы и изделия из шлаковых расплавов
- •18.7. Каменное литье и материалы на его основе
- •Глава 19 Металлические материалы и изделия
- •19.1. Общие сведения
- •19.2. Основы получения чугуна и стали
- •19.2.1. Получение чугуна
- •19.2.2. Получение стали
- •19.3. Диаграмма состояния железоуглеродистых сплавов
- •19.4. Углеродистые стали
- •19.5. Углеродистые конструкционные стали
- •19.6. Легированные стали и твердые сплавы
- •19.7. Термическая обработка стали
- •19.8. Сортамент стального проката
- •19.9. Алюминий и его сплавы
- •19.10. Коррозия железа и других металлов
- •Глава 20 Заключительная
2.2.1. Подготовительные работы
К подготовительным работам относится комплекс операций, сопутствующих практически всем технологиям. Их основное назначение — придать сырью технологическое состояние, удобное и эффективное при прохождении сырья по последовательному циклу переделов с образованием готовой продукции. На этой стадии технологии важно полнее раскрыть и, по возможности, преувеличить потенциальную энергию сырья с тем, чтобы на последующих этапах (перемешивание, формование и т.п.) свободная внутренняя и поверхностная энергии перешли в другие ее формы, способствуя процессам новообразований и фаз, отличных от исходных сырьевых, а также структуры — внутреннего строения готового материала (изделия).
В целях уменьшения расхода внешних энергоресурсов, упрощения и удешевления подготовительных работ весьма целесообразен поиск сырья, которое заранее претерпело геологическую обработку, благоприятно отразившуюся на спонтанной или искусственной активизации его перед употреблением в технологии строительных материалов. В работе В.С. Лесовика [17] показано, что величина энергетической способности горных пород и породообразующих минералов существенно зависит от генезиса (рис. 2.1). Так, например, по составу, внутреннему строению и внешнему сложению попутно добываемые породы как отходы горнорудного производства КМА и кора выветривания кимберлитов алмазоносной провинции Севера РФ значительно отличаются повышенной активностью от традиционного, сходного по составу, сырья, используемого в строительной индустрии. Известно, что традиционные горные породы добывают в качестве сырья путем, как правило, открытой разработки сравнительно мелких карьеров, глубиной до 40—50 м. Между тем попутно добываемые породы, получаемые после обогащения1 руд, извлекаются из более глубоких месторождений (450—500 м).
Рис. 2.1. Генетическая классификация горных пород как сырья для производства
строительных материалов
На этой глубине геологические процессы способствовали естественной технологической активизации пород как потенциального сырья. Эта активизация выражается обычно в нарастании дефектности кристаллической решетки породообразующих минералов, частичной аморфизации породы и ее структурных зерен, которые претерпевают к тому же частичную или полную деструкцию с увеличением удельной и суммарной поверхности твердых частиц. Обнаружено, что реакционная способность глинистых частиц при деструкции им соответствующих минералов значительно повышается вследствие возрастания неупорядоченности (энтропии) кристаллических решеток. Аналогичное явление характерно для тонкодисперсного кварца ; корродированной поверхностью. Между тем и то, и другое явления обусловлены соответствующим генезисом пород, а производственный эффект выражается сокращением в 2—3 раза продолжительности изотермической выдержки в автоклаве при получении силикатного материала. Возрастает и прочность такого материала по сравнению с применением обычного сырья.
В зависимости от разновидности сырья подготовительные операции заключаются в измельчении, помоле, распушке и других способах перевода сырья в тонкодисперсное состояние; фракционировании, просеве, промывке и других методах очищения поверхности частиц и разделения их на отдельные группы (фракции) по гранулометрическому (зерновому) составу; увлажнении или обезвоживании (сушке) сырья; нагревании, обжиге и охлаждении сырья перед употреблением в смесях; обогащении, т.е. повышении однородности сырья по массе, прочности и другим качественным показателям, что нередко совмещается с физико-химической обработкой с целью дополнительного повышения активности поверхности частиц или изменения ее полярности, поверхностного натяжения и т.п.
Измельчение и помол — наиболее распространенные подготовительные операции. Уменьшение размеров частиц грубозернистых сырьевых материалов вызывается необходимостью: обеспечить определенное соответствие между размерами частиц смеси и конструктивными элементами изделий; облегчить технологические операции на стадиях приготовления смеси; повысить плотность и однородность дробленого материала; увеличить удельную поверхность порошкообразного вещества после помола исходного материала. Известно, что между размером зерен у и удельной поверхностью х существует обратная пропорциональная зависимость: х=а/уп, где а — величина поверхности частицы, размер которой равен 1. Эту зависимость можно изобразить в виде гиперболической кривой в системе координат Y—X (рис. 2.2). С уменьшением размера каждой частицы общая поверхность измельченного вещества увеличивается, тогда как объем частицы при сложении обломков остается постоянным. Быстро увеличивающаяся с измельчением поверхность обладает особым запасом поверхностной энергии, которая в дальнейшем расходуется при смешении нескольких компонентов в общую смесь, при формировании изделий из смеси с протеканием реакций по поверхностям раздела.
Рис.2.2. Зависимость удельной поверхности X от размера частиц Y измельченного сырья
После некоторого предела тонкости помола потенциальная энергия поверхности может возрасти в такой мере, что нередко происходит самопроизвольное (спонтанное) агрегирование (слипание) частиц с уменьшением удельной поверхности и увеличением комковатости и неоднородности исходного продукта. Рациональный предел тонкости помола устанавливают опытным путем. Он может быть повышен применением при помоле добавочных так называемых поверхностно-активных веществ, способных создавать на поверхности пленки, экранировать частицы и предотвращать их агрегирование. Кроме того, при высокой дисперсности помола имеется опасность потери активности порошкообразного материала в период его хранения в связи с поглощением посторонних веществ (пыли, влаги, газов и др.) из окружающей среды. Приходится учитывать и то, что с увеличением степени измельчения значительно возрастают механическая работа и расход энергии на измельчение. По этой причине весьма полезно ориентироваться на породы разного .генезиса (см. рис. 2.1).
Операцию измельчения нередко совмещают с разделением продукта помола по крупности частиц просеиванием или сепарацией. Эта операция называется разделением сырья по фракциям.
Другой операцией является промывка зернистых фракционных материалов — песка, дробленого камня (щебня), гравия — с целью уменьшения количества пыли и глины в смеси. Материалы промывают чистой водой или с добавлением химических веществ. Но имеются и сухие способы очищения зернистых сырьевых материалов, что предохраняет их от смерзания в зимний период работ, например колориметрические, рентгеносепарационные и др.
Нередко исходные сырьевые материалы подвергают так называемому обогащению, т.е. повышению однородности по прочности, плотности и т.п. В основе обогащения лежат физические законы. В зависимости от принятого способа они могут быть законами гравитации, сепарации, флотации, упругости и др. Эффективность способа оценивают по степени обогащения, количеству (выходу) обогащенного продукта и его качеству.
Весьма важная роль в подготовительный период отводится тепловому воздействию на сырьевой материал, чтобы его просушить, нагреть до необходимой температуры и даже подвергнуть кратковременному обжигу с целью, например, частичной или полной его дегидратации, аморфизации, укрупнения частиц для понижения пластичности (например, глины).
Процесс сушки назначают с учетом особенностей исходного сырья как многокомпонентной системы, состоящей из вещества, слагающего сырьевой материал, влаги, воздуха и паров воды. Если сырьевой материал подвергнуть воздействию теплового агента (нагретого воздуха, дымового газа и др.) или специальных источников нагрева (ламповые излучатели, ТЭН, паровые регистры и др.), то с поверхности влага испаряется, а внутри перемещается к поверхности испарения за счет капиллярных сил, градиентов влажности и температуры. Общее влагосодержание сырьевого материала уменьшается пропорционально продолжительности сушки, т.е. по линейному закону (рис. 2.3, отрезок б—в). Температура поверхности материала в этом интервале остается постоянной и равна температуре адиабатического насыщения воздуха. Температура в центральных слоях материала продолжает повышаться и достигает температуры адиабатического насыщения позже, в точке д. До точек б и г уменьшение влагосодержания идет не по прямому закону. Динамика сушильного процесса показана на рис. 2.4. После высушивания материал нагревают до необходимой температуры. Нередко обе операции совмещают в одном тепловом агрегате, например в сушильном барабане или на колосниковой решетке.
Нагревание материала, выпаривание из него влаги или растворителя, оказавшегося в нем, а также последующее охлаждение и другие тепловые процессы протекают в соответствии с законами теплоотдачи. Основное уравнение теплопередачи устанавливает зависимость между тепловым потоком Q и поверхностью F теплообмена: Q=kF∆tср.τ, где k — коэффициент теплопередачи, определяющий среднюю скорость передачи теплоты по поверхности теплообмена; ∆tср.— средняя разность температур между теплоносителями, определяющая среднюю движущую силу процесса теплопередачи, или температурный напор, °С; τ — продолжительность процесса теплопередачи. Из уравнения видно, что количество теплоты, передаваемое от более нагретого теплоносителя к более холодному, пропорционально поверхности теплообмена F, среднему температурному напору ∆tср. и времени передачи.
Рис. 2.3. Изменение влагосодержания материала в процессе сушки
Рис. 2.4. График скорости сушки: 1 — период нарастающего прогрева
материала (dp—б); 2 — период постоянной скорости сушки (б—в); 3 — период падающей скорости сушки (в—г)
Передача теплоты на расстояние осуществляется тремя способами: теплопроводностью, конвекцией и излучением. В основе этих способов теплопередачи находятся соответственно законы Фурье, Ньютона и Стефана—Больцмана. В реальных условиях теплота чаще всего передается комбинированным способом, однако преобладающим в нем остается все же один из указанных выше способов.
При необходимости нагревание материала (сырья) может быть доведено до обжига в печных агрегатах по заранее рассчитанному режиму соответственно температурной кривой. Однако обжиг в подготовительный период требуется иногда лишь для снижения излишней пластичности сырья, например глин, при отсутствии поблизости песчаных карьеров.
На стадии подготовительных работ производят нередко также физико-химическую или химическую обработку сырьевых материа лов. Она повышает активность подготавливаемых компонентов смеси, облегчает и ускоряет основную технологическую операцию, благоприятствует получению ИСК более плотного и прочного, лучшего по другим качественным характеристикам. Такая обработка заключается, обычно, в добавлении в смесь специальных веществ, имеющих различные или комплексные функции, — уплотняющие, минерализующие, порообразующие, гидрофобизирующие, коагулирующие (электролиты) и т.п. Она может быть совмещена с механической обработкой, например, путем помола сырья в смеси с добавкой. Тогда свежеобразующаяся поверхность измельчаемых частиц поглощает добавочное вещество (добавку) с образованием на поверхности молекулярных (пленок) или новых химических соединений, повышая активность порошкообразного материала.
Некоторые сырьевые компоненты находятся в жидком состоянии и вступают во взаимодействие с твердыми компонентами смеси. Поэтому, чтобы усилить их индивидуальные особенности, подобно твердым их подвергают нагреванию, рафинированию, электромагнитному воздействию, обогащению с введением добавочных веществ, например поверхностно-активных ингибиторов, электролитов и др.
Подготовленные сырьевые материалы транспортируют к местам временного накопления для последующих операций (дозирование, перемешивание). При прогрессивной технологии транспортирование является не только перемещением (вертикальным, горизонтальным или наклонным), но используется так же как дополнительный фактор, положительно влияющий на структурообра-зовательный процесс. В этих целях предусматриваются не только конструктивно-технологические мероприятия по защите в пути от охлаждения — нагретого, от увлажнения — просушенного, от загрязнения — промытого, от .перемешивания — фракционированного, материалов, но и дальнейшая активизация их с помощью соответствующих агентов (тепловых, адсорбирующихся из воздушной среды, вибрационно-пульсирующих и др.).
В емкостях (бункерах, сил осах и др.) временного накопления и хранения подготовленных сыпучих материалов возможны заторы при их перемещении с образованием устойчивых сводов. Самопроизвольное прекращение истечения этих материалов приводит к нарушению общего ритма работы завода, дефектности дозирования, снижению однородности и качества смеси. Для борьбы с образованием сводов в толще сыпучего материала используют специальные устройства (сводообрушители). Они, однако, не всегда бывают эффективными, особенно при хранении мелкофракционных смесей. В настоящее время установлены аналитические зависимости, которые связывают характеристики мелкофракционного сыпучего материала и емкости с основными параметрами процесса истечения, что позволяет расчитывать геометрию бункера с заданными формой выпускного отверстия и скоростью истечения. Возможность образования свода сыпучего материала учитывают на стадии проектирования системы «бункер—дозатор» [25].
На качество смеси изготавливаемого строительного материала может сильно влиять точность дозирования. Если под влиянием внешних или внутренних причин нарушается точность дозирования (автоматического отвешивания или объемного отмеривания) или ритмичность перемещения отдозированных компонентов к смесительному аппарату, то в процессе перемешивания возможно снижение качества получаемой смеси (массы) и готового материала (изделия).