- •§1. Несколько вводных замечаний о предмете физики.
- •§2. Механика
- •2.2. Кинематика движения материальной точки. Характеристики движения.
- •2.3. Вектор скорости. Средняя и мгновенная скорость.
- •2.4. Путь при неравномерном движении.
- •2.6. Криволинейное движение.
- •2.6.1. Ускорение при криволинейном движении (тангенциальное и нормальное ускорение).
- •2.7. Кинематика вращательного движения.
- •2.7.1. Угловая скорость.
- •2.7.2. Угловое ускорение.
- •2.7.3. Связь между линейной и угловой скоростью.
- •§3. Динамика
- •3.2. II закон Ньютона.
- •3.3. III закон Ньютона.
- •3.4. Импульс. Закон сохранения импульса.
- •3.5. Работа и энергия.
- •3.6. Мощность.
- •3.7. Энергия.
- •3.8. Кинетическая энергия тела.
- •3.9. Потенциальное поле сил. Силы консервативные и неконсервативные.
- •3.10. Потенциальная энергия тела в поле сил тяжести (в поле тяготения Земли).
- •3.11. Потенциальная энергия в гравитационном поле (в поле всемирного тяготения).
- •3.12. Потенциальная энергия упруго деформированного тела.
- •3.13. Закон сохранения энергии.
- •§4. Механика твердого тела.
- •4.1. Поступательное движение твердого тела.
- •4.2. Вращательное движение твердого тела.
- •4.3. Момент импульса тела.
- •4.4. Закон сохранения момента импульса.
- •4.5. Основное уравнение динамики вращательного движения.
- •4.6. Кинетическая энергия вращающегося твердого тела.
- •4.7. Работа внешних сил при вращательном движении твердого тела.
- •§5. Гидродинамика
- •5.1. Линии и трубки тока.
- •5.2. Уравнение Бернулли.
- •5.3. Силы внутреннего трения.
- •5.4. Ламинарное и турбулентное течения.
- •5.5. Течение жидкости в круглой трубе.
- •5.6. Движение тел в жидкостях и газах.
- •§6. Всемирное тяготение.
- •6.1. Законы Кеплера.
- •6.2. Опыт Кавендиша.
- •6.3. Напряженность гравитационного поля. Потенциал гравитационного поля.
- •§7. Основы теории относительности.
- •7.1. Принцип относительности.
- •7.2. Постулаты специальной (частной) теории относительности. Преобразования Лоренца
- •7.3. Следствия из преобразований Лоренца.
- •7.4. Интервал между событиями.
- •§8. Колебания.
- •8.1. Общие сведения.
- •8.2. Уравнение гармонического колебательного движения.
- •8.3. Графическое изображение гармонических колебаний. Векторная диаграмма.
- •8.4. Скорость, ускорение и энергия колеблющегося тела.
- •8.5. Гармонический осциллятор.
- •8.6. Малые колебания системы вблизи положения равновесия.
- •8.7. Математический маятник.
- •8.8. Физический маятник.
- •8.9. Затухающие колебания.
- •8.10. Вынужденные колебания. Резонанс.
- •Молекулярная физика и термодинамика §9. Молекулярная физика
- •9.1. Предмет и методы молекулярной физики.
- •9.2. Термодинамическая система. Параметры состояния системы. Равновесное и неравновесное состояние.
- •9.2.1. Идеальный газ. Параметры состояния идеального газа.
- •9.2.2. Газовые законы.
- •9.2.3. Закон Авогадро.
- •9.2.4. Уравнение состояния идеального газа (уравнение Менделеева Клапейрона).
- •Физический смысл универсальной газовой постоянной.
- •9.2. Основное уравнение кинетической теории газов
- •9.3. Барометрическая формула. Распределение Больцмана
- •9.4. Максвелловское распределение молекул по скоростям
- •9.5. Явления переноса. Длина свободного пробега молекул
- •9.6. Явление диффузии
- •9.7. Явление теплопроводности и вязкости
- •§10. Термодинамика
- •10.1. Внутренняя энергия идеального газа
- •10.2. Работа и теплота. Первое начало термодинамики
- •10.3. Работа газовых изопроцессов
- •10.4. Молекулярно-кинетическая теория теплоемкостей
- •10.5. Адиабатический процесс
- •10.6. Круговые обратимые процессы. Цикл Карно
- •10.7. Понятие об энтропии. Энтропия идеального газа
- •10.8. Второе начало термодинамики
- •10.9. Статистическое толкование второго начала термодинамики
- •§11. Реальные газы
- •11.1. Уравнение Ван-дер-Ваальса
- •11.2. Критическое состояние вещества
- •11.3. Эффект Джоуля-Томсона
8.2. Уравнение гармонического колебательного движения.
Пусть
на некоторое тело массы “m”
действует квазиупругая сила
,
под действием которой тело приобретает
ускорение “a”, тогда по
II-закону Ньютона
и, следовательно
(пример, колебание шарика, подвешенного
к пружинке). Здесь движение (колебательный
процесс) происходит вдоль оси “x”.
Далее
;
и
;
тогда
или
.
Колебательный
процесс возможен, если коэффициент при
“x” положителен, представим
его в виде
(здесь 0 –
вещественная величина). Тогда получим:
|
|
– дифференциальное уравнение гармонического колебания. |
Таким
образом, движение шарика на пружинке
под действием силы
описывается линейным однородным
дифференциальным уравнением 2-го порядка.
Решением такого уравнения является функция вида:
, (8.1)
где А – амплитуда колебаний, величина наибольшего отклонения системы от положения равновесия. Определяется величиной первоначального отклонения (А = const > 0).
(0t+) – фаза колебаний. Физический смысл фазы состоит в том, что она определяет смещение колеблющейся точки в любой момент времени. Постоянная представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания. Из уравнения следует, что фазам, отличающимся на величину, кратную 2, соответствуют одинаковые смещения.
Так как смещение системы при колебательном движении представляет периодическую функцию от времени, то и скорость и ускорение такой системы будут также в точности повторяться через равные промежутки времени T, за который фаза колебаний получит приращение, кратное 2. Этот промежуток времени T называется периодом колебаний (или иначе T – это время, за которое совершается полный цикл колебаний).
(8.2)
С учетом
получим
. (8.3)
Из формулы видно, что период колебаний зависит только от свойств самой системы.
Для описания колебательного периодического движения вводится еще несколько величин:
а)
– частота колебаний – это величина
численно равная числу колебаний в
единицу времени.
.
За единицу частоту (1Гц) принимают частоту
такого колебания, период которого равен
1с.
б) 0 = 2 – круговая или циклическая частота (0 – число колебаний за 2 секунд).
Для колебательного процесса смещение, скорость и ускорение можно представить как аналитически:
1.
.
2.
.
3.
.
т
Рис. 8.2


8.3. Графическое изображение гармонических колебаний. Векторная диаграмма.
Сложение нескольких колебаний одинакового направления (или, что то же самое, сложение нескольких гармонических функций) значительно облегчается и становится наглядным, если изображать колебания графически в виде векторов на плоскости.
В
Рис. 8.3
0t1+; 0t2+; 0t3+; и т.д.
А проекция этого вектора будет перемещаться по оси «x» в пределах от –А до +А. Причем координата этой проекции будет изменяться со временем по закону:
.
Следовательно, проекция конца вектора на некоторую произвольную ось будет совершать гармоническое колебание с амплитудой равной длине вектора, круговой частотой равной угловой скорости вращения вектора и начальной фазой равной углу, образованному вектором с осью в начальный момент времени.
Итак, гармоническое колебание может быть задано с помощью вектора, длина которого равна амплитуде колебания, а направление вектора образует с осью “x” угол равный начальной фазе колебания.
Р
Рис. 8.4
![]()
![]()
Представим
оба колебания с помощью векторов
и
(рис. 8.4) По правилам сложения векторов
строим результирующий вектор
.
Проекция этого вектора на ось X
будет равна сумме проекций слагаемых
векторов: x=x1+x2.
Следовательно, вектор
представляет собой результирующее
колебание. Этот вектор вращается с той
угловой скоростью 0,
что и векторы
и
,
так что результирующее движение будет
гармоническим колебанием с с частотой
0, амплитудой
«а» и начальной фазой .
Из построения следует, что
.

Итак, представление гармонических колебаний посредством векторов дает возможность свести сложение нескольких колебаний к операции сложения векторов. Этот способ отличается большей простотой и наглядностью, чем использование тригонометрических преобразований.
Проанализируем
выражение для амплитуды. Если разность
фаз обоих колебаний 2
1
= 0, то амплитуда результирующего колебания
равна сумме (а2 + а1).
Если разность фаз 2
1
= + или ,
т.е. колебания находятся в противофазе,
то амплитуда результирующего колебания
равна
.
Если
частоты колебаний x1
и x2 неодинаковы,
векторы
и
будут вращаться с различной скоростью.
В этом случае результирующий вектор
пульсирует по величине и вращается с
непостоянной скоростью, Следовательно,
результирующим движением будет в этом
случае не просто гармоническое
колебании, а некоторый сложный
колебательный процесс.
