Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Макулатура стр 1147.doc
Скачиваний:
8
Добавлен:
20.11.2018
Размер:
5.28 Mб
Скачать

Initial NaOh charge [% of total charge]:

100 % 50% 0%

pH value

Heating time [min]

0

50

100

150

200

Temperature

Fig. 4.190 Course of the pH of the cooking

liquor (25 °C) in AS/AQ pulping with NaOH

splitting (according to [56]). Conditions: pine

as raw material; 27.5% total chemical charge

on o.d. wood (calc. as NaOH); 0.1% AQ on

o.d. wood; 90 min heating-up time; 175 °C

cooking temperature.

4.3 Sulfite Chemical Pulping 479

Splitting the alkali charge in a ratio 50:50 provides a rather even alkali profile

throughout the cook. At the start of the cooking phase, the pH increases almost to

starting level after addition of the residual amount of alkali. In the reference case

– without split addition – the hydroxide ion concentration continuously decreases,

leading to extensive carbohydrate degradation at the beginning of the cook and to

insufficient delignification rate during residual delignification. The split addition

of the NaOH charge is clearly reflected in a superior delignification efficiency and

selectivity (Fig. 4.191).

0 20 40 60 80 100

20

24

28

32

Selectivity (V/)

Kappa number

Kappa number

Initial NaOH charge [% of total NaOH charge]

30

40

50

60

Selectivity = viscosity / kappa number

Fig. 4.191 Effect of alkali splitting in AS/AQ

pulping on the efficiency (kappa number) and

selectivity (viscosity/kappa number) of delignification

(according to [56]). Conditions: pine as

raw material; 27.5% total chemical

charge on o.d. wood (calc. as NaOH); alkali

ratio 60:40; 0.1% AQ on o.d. wood; 90 min

heating-up time; 175 °C cooking temperature;

150 min cooking time.

The selectivity plot shows that optimum selectivity is obtained when the initial

NaOH charge is limited to about 20–50% of the total charge. Compared to the reference

case, the kappa number can be decreased from 32 to about 22, while the

viscosity increases from 1130 mL g–1 to about 1200 mL g–1. These convincing

results clearly confirm the principles of modified cooking, where alkali profiling

leads to both better selectivity and enhanced delignification. Alkaline sulfite pulping

contributes to high carbohydrate yields, provided that the alkali charge

remains low and cooking intensity does not exceed a certain level.

Dissolution of the main wood components during AS/AQ cooking of spruce

with alkali splitting 37.5:62.5 was monitored. For comparison, the corresponding

results obtained from continuous batch kraft cooking of spruce are included in

Fig. 4.192 [57].

480 4 Chemical Pulping Processes

0 20 40 60 80 100

0 1

20

40

60

80

100

ASA: KRAFT (CBC):

Cellulose Cellulose

Glucomannan Glucomannan

Arabinoxylan Arabinoxylan

Wood Component Yield [rel%]

Lignin yield [rel%]

Fig. 4.192 Dissolution of the main wood components

cellulose, glucomannan, and arabinoxylan

as a function of lignin content during AS/

AQ and continuous batch kraft cooking of

spruce. AS/AQ cooking: 27.5% total chemical

charge on o.d. wood (calc. as NaOH); alkali

ratio 60:40; NaOH splitting ratio 37.5:62.5;

0.1% AQ on o.d. wood; 90 min heating-up

time; 175 °C cooking temperature [56,58]. For

CBC kraft cooking, see Fig. 4.72, Modified Kraft

Cooking [57].

The data in Fig. 4.192 confirm the better preservation of spruce carbohydrates

during AS/AQ cooking as compared to CBC kraft cooking, particularly in the early

and intermediate stages of the process. With progressive delignification, the yield

advantage of the AS/AQ cook, including the split addition of NaOH, diminishes

considerably. However, cellulose and xylan yields remain at a higher level as compared

to CBC kraft pulping, even when delignification is extended to kappa numbers

between 20 and 30. According to Patt et al., AS/AQ cooking of spruce with

split addition of NaOH results in a kappa number 23.7 and a viscosity of

1191 mL g–1 at a yield of 50.8% [56]. The corresponding results for CBC cooking

of spruce are kappa number 25.8 and a viscosity of 1188 mL g–1 at a total yield of

48.1% [57]. The comparison reveals a distinct yield advantage for the AS/AQ cooking

procedure, even at a low kappa number. The good response of this pulp to

oxygen delignification suggests that cooking should be interrupted at a higher

kappa number, and continued with two-stage oxygen delignification.

The AS/AQ process produces pulp with strength properties that are equal or

even slightly superior to those of kraft pulp [44]. This is illustrated in Fig. 4.193, in

which tear index is shown as a function of tensile index.

Unbleached AS/AQ pulps are slightly superior in tensile strength compared to

the corresponding CBC kraft pulps. As expected, the level of tear strength is below

that of CBC pulps. At a given tensile strength, the tear resistance reaches a

4.3 Sulfite Chemical Pulping 481

0 2 40 60 80 100 120

0

10

15

20

25

Tensile Index [Nm/g]

Tear Index [mNm2/g]

Unbleached Pulps Kappa number Viscosity [ml/g]

conventional Kraft: 30.5 1180

Kraft CBC: 26.0 1180

ASA: 21.4 1210

Fig. 4.193 Tear–tensile plots of unbleached spruce AS/AQ

and CBC kraft pulps. Strength properties of spruce AS/AQ

pulps are described in Ref. [58], and those of spruce CBC kraft

pulps in Ref. [57].

comparable level for both pulps, especially if the better beatability of the AS/AQ

pulp is considered.

Considering the manifold possibilities of modified cooking, it may be assumed

that the potential of the AS/AQ cooking concept has not yet been fully exploited.

For example, the rapid increase in yield loss at kappa numbers below 40 could

reflect deficiencies in sulfonation of the residual lignin in relation to the hydroxide

ion concentration. The introduction of displacement cooking technology may

provide a better basis for adjusting the reaction conditions within all single cooking

phases to further optimize the pulping performance.

One major disadvantage of AS pulping compared to kraft pulping is certainly

the low delignification rate, and this will not be easy to overcome. Currently, an

H-factor of about 3500 is necessary to attain a pulp of kappa number 25 in the

case of AS/AQ pulping, while for CBC cooking an H-factor of about 1200 is sufficient

to reach the same kappa number.

The only way finally to achieve industrial acceptance, however, is to develop a

reliable, cheap, efficient and flexible chemical recovery system. Low-temperature

gasification is likely to be the appropriate process that permits the highly energyefficient

pyrolysis of AS black liquor and, simultaneously, the separate recovery of

sodium and sulfur components. Together, this should render possible alkali splitting

in cooking (a prerequisite for modified cooking technology) and the generation

of sodium hydroxide for alkaline bleaching operations.

482 4 Chemical Pulping Processes

References 483

References

Sections 4.1–4.2.2

1 Annergren G., SA Rydholm,

S Vardheim, Influence of raw material

and pulping process on the chemical

composition and physical properties of

paper pulps. Svensk. Papperstidn., 1963;

66: 196–210.

2 Toland J., et al., Annual review: An odyssey

around the world. Pulp & Paper International,

2002; 5–67.

3 Sjцstrцm E., P Haglund, J Janson,

Changes in cooking liquor composition

during sulphite pulping. Svensk. Papperstidn.,

1962; 65: 855–869.

4 Sixta H., et al. Comparative evaluation

of sulfate-, acid sulfite-, Soda-AQ- and

ASAM-processes based on beech wood.

In APV-Conference, Graz, Austria,

1992.

5 Sixta H., Acid magnesium sulfite cooking

of beech and spruce woods. 1:

Course of the degradation of wood components.

R&D Lenzing AG: Lenzing,

2002.

6 Sixta H., Comparative evaluation of

CBC kraft pulping of pine and spruce

wood chips. Internal Report, R&D Lenzing

AG, 2004.

7 Sixta H., The alkalinity of white and black

liquor. Lenzing AG: Lenzing, 2004.

8 Giggenbach W., Optical spectra of

highly alkaline solutions and the second

dissociation constant of hydrogen sulfide.

Inorg. Chem., 1971; 10(7):

1333–1338.

9 Meyer B., et al., Second dissociation

constant of hydrogen sulfide. Inorg.

Chem., 1983; 22(16): 2345–2346.

10 Sцderquist R., Natriumsulfitzellstoff.

Das Papier, 1957; 11(21/22): 487–491.

11 Pascoe, T.A. et al., The Sivola sulfite

cooking and recovery process. Tappi

1959; 42: 265–81.

12 Alйn, R., Analysis of degradation products:

A new approach to characterizing

the combustien properties of kraft black

liquor, J. of Pulp and Paper Science, 1997;

23: 362–366.

13 Alйn R., Sjцstrцm E., Isolation of hydroxy

acids from pine kraft black liquor.

Part 1. Preparation of crude fraction,

Lab. Wood Chem., 1980; 62(5): 328–330.

14 Ulmgren P., Lindstrцm R., Printz M.,

The alkalinity of black liquor. Nordic

Pulp Paper Res. J., 1994; 2: 76–83.

15 Mannbro N., Sulfite waste liquor as

cooking liquor in sulfate pulping. I.,

Svensk. Papperstidn., 1951; 54: 19–24.

16 Milanova E., Dorris G.M., On the determination

of residual alkali in black

liquors. Nordic Pulp Paper Res. J., 1994;

9(1): 4–9.

17 Gran G., Determination of the equivalence

point in potentiometric titrations.

II., Analyst, 1952; 77: 661–671.

18 Wilson G., Procter A.R., Baum J.W.,

Reactions of wood components with

hydrogen sulfide. X. Formation of thiolignin

during the hydrogen sulfide chip

pretreatment process, Svensk Papperstidning,

1973; 76(7): 253–7.

Section 4.2.3

1 Robertsen, L., B. Lцnnberg. Diffusion in

wood. Part 1. Theory and apparatus.

Pap. Puu., 1991; 73(6): 532–535.

2 Kazi, K.M.F., et al. A diffusion model

for the impregnation of lignocellulosic

materials. Tappi J., 1997; 80(11): 209–

219.

3 Liese,W. Der Feinbau der Hoftьpfel bei

den Laubhцlzern. Holz Roh- und Werkstoff,

1957; 15(11): 449–453.

4 Laboratory, F.P., Wood Handbook –

Wood as an Engineering Material. Madison,

WI: USDA, 1999.

5 Weatherwax, R.C., H. Tarkow. Importance

of penetration and adsorption

compression of the displacement fluid.

Forest Prod. J., 1968; 18(7): 44–46.

6 Kollman, F.F.P., Cote, W.A. Jr. Principles

of Wood Science and Technology.

In: Solid Wood. Springer-Verlag: New

York, 1968, pp. 193–194, Vol. 1: Solid

Wood.

7 Nevell, T.P., S.H. Zeronian. Cellulose

Chemistry and Its Applications. Ellis Horwood:

Chichester, UK, 1985, p. 31.

8 Gullichsen, J., H. Kolehmainen,

H. Sundqvist. On the nonuniformity of

484 4 Chemical Pulping Processes

the kraft cook. Pap. Puu, 1992; 74(6):

486–490.

9 Worster, H.E., D.L. McCandless,

M.E. Bartels. Some effects of chip size

on kraft pulping of southern pine for

linerboard. In: Alkaline Pulping and Testing.

Dallas, Texas, 1976.

10 Colombo, P., et al., The influence of

thickness of chips on pulp properties in

kraft cooking. Svensk. Papperstidn., 1964;

67(12): 505–511.

11 Hatton, J.V., J.L. Keays. Effect of chip geometry

and moisture on yield and quality

of kraft pulps from western hemlock

and black spruce. Pulp Pap. Mag. Can.,

1973; 74(1): T11–T19.

12 Akhtaruzzamann, A.F.M., N.-E. Virkola.

Influence of chip dimensions in kraft

pulping. Part II. Present state and scope

of the study. Pap. Puu, 1979; 61(10):

629–634.

13 Farkas, J. The dimensions of chip in

kraft pulping. Papir Celulosa, 1965;

20(1): 11–14.

14 Hatton, J.V. Quality and kraft pulping

characteristics of residual chips. Tappi,

1975; 58(2): 110–114.

15 Fengel, D. The distribution of aqueous

solutions within wood. J. Polymer Sci.,

1971; 36: 141–152.

16 Miller, R.N., W.H. Swanson. Paper Trade

J., 1922; 74(15): 295–305.

17 Montigny, R.D., O. Maass. Forest Service

Bull., 1935: 87.

18 Woods, N.I. Determination of penetration

rates of liquid media into wood

using a quarts spiral balance. Part 2:

Water and a pre-treated spruce chip.

Pulp Paper Mag. Can., 1956; 57(4):

142–151.

19 Hart, J.S. The Va-Purge process in

chemical pulping. Tappi, 1954; 37(8):

331–335.

20 Malkov, S., et al. Efficiency of chip presteaming

– result of heating and air

escape processes. Nordic Pulp Paper Res.

J., 2002; 17(4): 420–426.

21 Flamm, E., H. Sadler. Die Durchtrдnkung

von Laub- und Nadelhцlzer. Das

Papier, 1963; 17(3): 94–106.

22 Nicholas, D.D., R.J. Thomas. Influence

of steaming on ultrastructure of bordered

pit membrane in loblolly pine.

Forest Prod. J., 1968; 18(1): 57.

23 Mouchot, N., A. Zoulalian. longitudinal

permeability and diffusivity of steam in

beech wood determined with a Wicke-

Kallenbach-cell. Holzforschung, 2002;

56(3): 318–326.

24 Stone, J.E. The penetrability of wood.

Pulp Paper Mag. Can., 1956; 57(7):

139–145.

25 Stamm, A.J. Diffusion and penetration

mechanism of liquids into wood. Pulp

Paper Mag. Can., 1953; 54(2): 54–63.

26 Olsson, T., et al. Study of the transverse

liquid flow paths in pine and spruce

using scanning electron microscopy.

J. Wood Sci., 2001; 47(2): 282–288.

27 Stone, J.E., H.V. Green. Penetration and

diffusion into hardwoods. Pulp Paper

Mag. Can., 1958; 59(10): 223–232.

28 Malkov, S., P. Tikka, J. Gullichsen.

Towards complete impregnation of

wood chips with aqueous solutions. Part

2. Studies on water penetration into

softwood chips. Pap. Puu, 2001; 83(6):

468–473.

29 Malkov, S., et al. Modelling the process

water penetration into softwood chips.

J. Pulp Paper Sci., 2003; 29(4): 137–143.

30 Minor, J.L., E.L. Springer. Improved

penetration of pulping reagents into

wood. Pap. Puu, 1993; 75(4): 241–246.

31 Liyama, K., A.F.A. Wallis. An improved

acetyl bromide procedure for determining

lignin in woods and wood pulps.

Wood Sci. Technol., 1988; 22: 271–280.

32 Malkov, S., P. Tikka, J. Gullichsen.

Towards complete impregnation of

wood chips with aqueous solutions.

Part 3. Black liquor penetration into

pine chips. Pap. Puu, 2001; 83(8):

605–609.

33 Malkov, S., P. Tikka, J. Gullichsen.

Towards complete impregnation of

wood chips with aqueous solutions. Part

4. Effects of front-end modifications in

displacement batch kraft pulping. Pap.

Puu, 2002; 84(8): 526–530.

34 McKibbins, S.W. Application of diffusion

theory to the washing of kraft

cooked wood chips. Tappi, 1960; 43(10):

801–805.

35 Crank, J. The Mathematics of Diffusion.

London: Clarendon Press, 1956.

References 485

36 Glasstone, S., K.J. Laidler, H. Eyring.

The Theory of Rate Processes. 1st edition.

New York: McGraw-Hill, 1941.

37 Behr, E.A., D.R. Briggs, F.N. Kaufert.

Diffusion of dissolved materials

through wood. J. Phys. Chem., 1953; 57:

476–480.

38 Christensen, G.N. Diffusion in wood.

II. The temperature coefficient of diffusion

through wood. Australian J. Appl.

Sci., 1951; 2(4): 430–439.

39 Talon, J. The diffusion of sodium hydroxide

in wood at a high pH as a function of

temperature and degree of pulping.Master

Thesis, North Carolina State University:

Raleigh, 1986.

40 Talton, J.H., R.H. Cornell. Diffusion of

sodium hydroxide in wood at high pH

as a function of temperature and the

extent of pulping. Tappi, 1987; 70(3):

115–118.

41 Constanza, V., et al. Diffusion and reaction

in isothermal pulping digesters.

Ind. Eng. Chem. Res., 2001; 40(18):

3965–3972.

42 Robertsen, L., B. Lцnnberg. Diffusion in

wood. Part 2. The effects of concentration

and temperature. Pap. Puu, 1991;

73(7): 635–639.

43 Constanza, V., P. Constanza. Estimating

pure diffusion contributions in alkaline

pulping processes. Latin American Appl.

Res., 2002; 32: 151–159.

44 Stone, J.E. The effective capillary crosssectional

area of wood as a function of

pH. Tappi, 1957; 40(7): 539–541.

45 Hдgglund, O. Examensarbete. Royal

Institute of Technology: Stockholm,

1959.

46 Bдckstrцm, C. Examensarbete. Royal

Institute of Technology: Stockholm,

1960.

47 Heinigen, A.V. Lecture notes, Department

of Chemical Engineering. University

of New Brunswick: Fredricton, NB,

1993.

48 Tцrnqvist, M., T. Hurme,

J.B. Rosenholm. The concentration

dependence of the diffusion coefficient

in Pine, Birch and Spruce. Pap. Puu,

2001; 83(3): 204–209.

49 ASTM. Standard test methods for pore

size characteristics of membrane filters

by bubble point and mean flow pore

test. p. 316–386.

50 Hartler, N. Penetrierung und Diffusionsverhalten

bei Sulfatkochung. Pap.

Puu, 1962; 7: 365–374.

51 Michelsen, F.A. A dynamic mechanistic

model and model-based analysis of a

continuous Kamyr digester. In: Department

of Engineering Cybernetics. The

Norwegian Institute of Technology. University

of Trondheim: Trondheim, 1995,

p. 253.

52 Gustafson, R.R., et al. Theoretical

model of the kraft pulping process. Ind.

Eng. Chem. Process Des. Dev., 1983; 22:

87–96.

53 Li, J., A. Phoenix, J.M. MacLeod. Diffusion

of lignin macromolecules within

the fibre walls of kraft pulp. Part I:

Determination of the diffusion coefficient

under alkaline conditions. Can. J.

Chem. Eng., 1997; 75(2): 16–22.

54 Tцrnqvist, M., T. Hurme,

J.B. Rosenholm. The effect of pressure

steaming on the steady state ion diffusion

and drift speed in wood. Holzforschung,

2001; 55(4): 441–447.

55 Kazi, M.F.K. Impregnation: A key step of

biomass conversion processes. Universite

de Sherbrooke: Quebec, 1996.

56 Kazi, K.M.F., E. Chornet. A diffusion

model for the chemical impregnation of

hardwoods and its significance for rapid

steam treatments. Pap. Puu, 1998; 80(1):

41–48.

57 Backman, A. The influence of chip

thickness on yield of cellulose and pulp

quality during cooking with parallelepipedic

chips. Finnish Paper Timber J.,

1946; 28: 200–208.

58 Hartler, N., K. Ostberg. Impregnation

for the sulfate cook. Svensk. Papperstidn.,

1959; 62: 524–533.

59 Larocque, G.L., O. Maass. The influence

of penetration in the alkaline delignification

of wood. Can. J. Res., 1937; 15, B:

89–97.

60 Malkov, S., P. Tikka, R. Gustafson.

Towards complete impregnation of

wood chips with aqueous solutions. Part

5: Improving uniformity of kraft displacement

batch pulping. Pap. Puu,

2003; 85(4): 215–220.

486 4 Chemical Pulping Processes

61 Egas, A.P.V., et al., Experimental methodology

for heterogeneous studies in

pulping of wood. Ind. Eng. Chem. Res.,

2002; 41(10): 2529–2534.

62 Analysis of sode and sulfate black liquor

T625 cm-85, TAPPI Standard.

63 Santos, A., et al. Kinetik modelling of

kraft delignification of Eucalyptus globulus.

Ind. Eng. Chem. Res., 1997; 36:

4114–4125.

Section 4.2.4

1 Fengel, D., Wegener, G. Wood, Chemistry,

Ultrastructure, Reactions, W. Degruyter,

Berlin, New York, 1989.

2 Gratzl, J.S., Chen, C.L. ACS Symposium

Series Vol. 742, Chapter 20. Eds.

Glasser, W., Northey, R.A., Schultz T.P.

ACS, 1999: 392–421.

3 Modified model adopted from H. Kindl,

Biochemie der Pflanzen, 3. Auflage,

Springer-Verlag, Berlin, Heidelberg,

New York, London, Paris, Tokyo, Hong

Kong, Barcelona, Budapest, 1991.

4 PM3 calcuation using Spartan Pro 4.0.

5 Gierer, J. Wood Sci. Technol., 1985; 19:

289–312.

6 Gierer, J., Lindeberg, O. Acta Chem.

Scand., 1980, 161–170.

7 Gierer, J., Noren, I. Holzforschung, 1980;

34: 197.

8 Liitia, T.M., Maunu, S.L., Hortling, B.,

Toikka, M., Kilpelainen, I., J. Agric. Food

Chem., 2003; 51 (8): 2136.

9 Capanema, E.A., Balakshin, M.Y., Chen,

C.-L., Gratzl, J.S. In: Proceedings of the

6th Brazilian Symposium on the Chemistry

of Lignin and other Wood Components.

Guaratingueta, SP, Brazil, 1999: 418.

10 Capanema, E.A., Balakshin, M. Yu.,

Chen, C.L., Colson, K.L., Gracz, H.S.

12th ISWPC Madison. Proceedings I,

2003: 179.

11 Granata, A., Argyropoulos, D.S. J. Agric.

Food Chem., 1995; 43 (6): 1538.

12 Gellerstedt, G., Majtnerova, A., Zhang,

L. C.R. Biologies, 2004; 327 (9–10): 817.

13 Liitiд, T., Maunu, S.L., Sipilд, J.,

Hortling, B. Solid State Nuclear Magn.

Res., 2002; 21: 171.

14 Gellerstedt, G.; Lindfors, E.-L. Nordic

Pulp Paper J., 1987; 2: 71.

15 Chiang, V.L., Funaoka, M. Holzforschung,

1988; 42: 385.

16 Chiang, V.L., Funaoka, M. Holzforschung,

1990; 44: 147.

17 Funaoka, M., Kako, T., Abe, I. Holzforschung,

1990; 44: 357.

18 Funaoka, M., Kako, T., Abe, I. Wood Sci.

Technol., 1990; 24: 277.

19 Chiang, V.L., Funaoka, M. Holzforschung,

1990; 44: 309.

20 Berthold, F., Gellerstedt, G., Lindfors,

E.L. Holzforschung, 1998; 52: 394.

21 Gellerstedt, G., Lindfors, E.-L. Nordic

Pulp Paper J., 1987; 2: 71–75.

22 Gierer, J. Svensk. Papperstidn., 1970; 73:

571.

23 Dimmel, D.R., Bovee, L.F., Brogdon,

B.N. Wood Chem. Technol., 1994; 14:

1–14.

24 Gellerstedt, G., Gustafsson, K.,

Lindfors, E.L., Robert, D., Proc. ISWPC,

Raleigh, NC, 1989.

25 Gierer, J., Wдnnstrцm, S., Holzforschung,

1986; 40(6): 347.

26 Capanema, E.A., Balakshin, M.Y.,

Kadla, J.K. J. Agric. Food Chem., 2004;

52: 1850.

27 Zhang, L., Gellerstedt, G. Sixth European

Symposium on Lignocellulosics

and Pulp, Bordeaux, France, Proceedings,

0000: 7.

28 Rosenau, T., Potthast, A., Milacher, W.,

Hofinger, A., Kosma, P., Polymer, 2004;

45: 6437.

29 Chang, H.-M. In: Methods in Lignin

Chemistry, Eds. Lin, S.Y., Dence, C.W.,

Springer-Verlag, Heidelberg, 0000: 71.

30 Yamasaki, T., Hosoya, S., Chen, C.L.,

Gratzl, J.S., Chang, H.-M. J. Wood.

Chem. Technol., 1987; 7(4): 485.

31 Gellerstedt, G., Pranda, J., Lindfors,

E.-L. J. Wood Chem. Technol., 1994; 14:

467–482.

32 Lachenal, D., Mortha, G., Sevillano,

R.M., Zaroubine, M. C. R. Biologies,

2004; 327(9–10): 817.

33 Argyropoulos, D.S., Sun, Y., Paulus, E.

J. Pulp Paper Sci., 2002; 28(2): 50.

34 Wu, S., Argyropoulos, D.S. J. Pulp Paper

Sci., 2003; 29(7): 235.

References 487

35 Balakshin, M.Y., Capanema, E.A.,

Chen, C.L., Gracz, H.S. J. Agric. Food

Chem., 2003; 51: 6116.

36 Jддskelдinen, J.S., Sun, Y., Argyropoulos,

D.S., Tamminen, T., Hortling, B.

Wood Sci. Technol., 2003; 37: 91.

37 Capanema, E., Balakshin, M.Y.,

Chen, C.-L. Holzforschung, 2004; 58:

464.

38 Ibarra, D., del Rнo, J.C., Gutiйrrez, A.,

Rodrнguez, I., Romero, J., Martнnez,

M.J., Martнnez, A.T. Enzyme Microbial

Technol., 2004; 35(2–3): 173.

39 Lawoko, M., Henriksson, G.,

Gellerstedt, G. Holzforschung, 2003;

57(1): 69.

40 Karlsson, O., Westermark, U. J. Pulp

Paper Sci., 1996; 22: 397.

41 Iverson, T., Wдnnstrцm, S. Holzforschung,

1986; 40: 19.

42 Tohomura, S., Argyropoulos, D.S.

J. Agric. Food Chem., 2001; 49(2): 536.

43 Gellerstedt, G., Gustafsson, K.,

Lindfors, E.L. Nordic Pulp Paper Res. J.,

1986; 3: 14.

44 Gellerstedt, G., Heuts, L. J. Pulp Paper

Sci., 1997; 23: 335–340.

45 Jiang, Z.-H., Argyropoulos, D.S. J. Pulp

Paper Sci., 1999; 25: 25–29.

46 Argyropoulos, D.S., Liu, Y., J. Pulp Paper

Sci., 2000; 26: 107.

47 Lai, Y.Z., Funaoka, M., Chen, H.T.,

Holzforschung, 1994; 48: 355.

48 Holtmann, K.M., Chang, H.-M., Jameel,

H., Kadla, J.K. J. Agric. Food Chem.,

2003; 12(4): 3535.

49 Robert, D.R., Bardet, M., Gellerstedt, G.,

Lindfors, E. J. Wood Chem. Technol.,

1984; 4: 239.

50 Gellerstedt, G., Lindfors, E. Svensk. Papperstidn.,

1984; 15: R115–R117.

51 Faix, O., Argyropolous, D.S., Robert, D.,

Neirick, V. Holzforschung, 1994; 48: 387.

52 Froass, P., Ragauskas, A.J. J. Wood

Chem. Technol., 1998; 16(4): 347.

53 Froass, P., Ragauskas, A.J., Jiang, J.

Holzforschung, 1998; 52: 385.

54 Zawadzki, M., Runge, T.M., Ragauskas,

A.J. J. Pulp Paper Sci., 2000; 26(3): 102.

55 Balakshin, M.Y., Capanema, E.A., Chen,

C.L., Gracz, H.S. J. Agric. Food Chem.,

2003; 51: 6116.

56 Gellerstedt, G. Pulping Chemistry. In:

Hon, D.N.S., Shiraishi, N., Eds. Wood

and Cellulosic Chemistry. 2nd edition.

M. Dekker, New York, Basel, 2001: 859.

57 Meller, A. Holzforschung, 1965; 19(4):

118.

58 Fengel, D., Wegener, G., Heizmann, A.,

Przyklenk, M., Cellulose Chem. Technol.,

1978; 12: 31.

59 Dahlman, O., Jacobs, A., Sjцberg, J. Cellulose,

2003; 10(49): 325.

60 Sjцberg, J., Kleen, M., Dahlman, O.,

Agnemo, R., Sunvall, H. Nordic Pulp

Paper Res. J., 2002; 17(3): 295.

61 Lobry de Bruyn, C.A., Alberta van

Ekenstein, W. Recl. Trav. Chim. Pays-Bas,

1895; 14: 203.

62 De Wit, G., Kieboom, A.P.G.,

van Bekkum, H. Carbohydr. Res., 1979;

74: 157.

63 Speck Jr., J.C. Adv. Carbohydr. Chem.,

1958; 13: 63.

64 Franzon, O., Samuelson, O. Svensk. Papperstidn.,

1957; 23: 872.

65 Sjцstrцm, E., Tappi, 1977; 60(9): 151.

66 Haas, D.W., Hrutfiord, B.F., Sarkanan,

K.V. J. Appl. Polym. Sci., 1967; 11: 587.

67 Lewin, M., Mark, H.F. Macromol. Symp.,

1997; 118: 715.

68 Lai, Y.-Z., Sarkanen, K.V. Cellulose Chem.

Technol., 1967; 1: 517.

69 Kubes, G.J.; Fleming, B.I., MacLeod,

J.M., Bolker, H.I., Werthemann, D.P.

J. Wood Chem. Technol., 1983; 3: 313.

70 Gentile, V.M., Schroeder, L.R., Attalla,

R.H. J. Wood Chem. Technol., 1986; 6: 1.

71 Attalla, R.H., Ranua, J., Malcolm, E.,

Tappi, 1984; 67(2): 96.

72 Isogai, A., Akishima, Y., Onabe, F.,

Usuda, M. Nordic Pulp Paper Res. J.,

1991; 4: 161.

73 Aspinall, G.O., Grenwood, C.T.,

Sturgeon, J.R. J. Chem. Soc., 1961, 3667.

74 Sartori, J., Potthast, A., Rosenau, T.,

Hofinger, A., Sixta, H., Kosma, P. Carbohydr.

Res., 2003; 338: 1209.

75 Sartori, J., Potthast, A., Rosenau, T.,

Hofinger, A., Sixta, H., Kosma, P. Holzforschung,

2004; 58: 588.

76 Johansson, M.H., Samuelson, O.

Svensk. Paperstidn., 1977; 80: 519.

77 Johansson, M.H., Samuelson, O. Wood

Sci. Technol., 1977; 11: 251.

78 Simponson, R. Svensk. Papperstidn.,

1971; 74(21): 691.

488 4 Chemical Pulping Processes

79 Johansson, M.H., Samuelson, O. Carbohydr.

Res., 1977; 54: 295.

80 Clayton, D.W. Svensk. Papperstidn., 1963;

66(4): 115.

81 Hanson, J.A., Hartler, N., Svensk. Papperstidn.,

1968; 71(9): 358.

82 Jacobs, A., Larsson, P.T., Dahlman, O.

Biomacromolecules, 2001; 2: 979.

83 Jiang, Z.-H., Lierop, B.V., Berry, R.

Tappi J., 2000; 83: 167.

84 Hansson, J.A., Hartler, N. Svensk. Papperstidn.,

1963; 66(4): 115.

85 Johansson, M., Samuelson, O. Carbohydr.

Res., 1977; 54: 295.

86 Thompson, N.S., Kaustinen, O.A. Ross,

R. Tappi J., 1963; 46(8): 490.

87 Ross, R., Thomposon, N.S. Tappi J.,

1963; 46(8): 376.

88 Buchert, J., Telemann, A., Harjunpaa,

V., Tenkanen, M., Viikari, L., Vuorinen,

T. Tappi J., 1995; 78(11): 125.

89 Vuorinen, T., Fagerstrцm, P., Buchert,

J., Tenkanen, M., Teleman, A. J. Pulp

Paper Sci., 1999; 5(25): 155.

90 Johansson, M.H., Samuelsson, O.

Svensk. Papperstidn., 1977; 16: 519.

91 Li, J., Gellerstedt, G., Nordic Pulp Paper

Res. J., 1998; 13(2): 153.

92 Li, J., Gellerstedt, G., Nordic Pulp Paper

Res. J., 2002; 17(4): 410.

93 Lai, Y.-Z. Chemical Degradation. In:

Hon, D.N.S., Shiraishi, N., Eds. Wood

and Cellulosic Chemistry. 2nd edition.

M. Dekker, New York, Basel, 2001: 443.

94 Aurell, R., Hartler, N. Svensk. Papperstidn.,

1965; 68(3): 59.

95 Timell, T.E. Tappi, 1961; 44: 88.

96 Duchesne, I., Daniel, G. Nordic Pulp

Paper Res. J., 2000; 15(1): 54.

97 Genco, J.M., Busayasakul, N., Medhora,

H.K., Robbins,W. Tappi J., 1990; 73:

223.

98 Hansson, J.A., Hartler, N. Svensk. Papperstidn.,

1969; 72: 521.

99 Yllner, S., Enstrцm, B. Svensk. Papperstidn.,

1956; 59: 229.

100 Yllner, S., Enstrцm, B. Svensk. Papperstidn.,

1957; 60: 549.

101 Clayton, D.W., Stone, J.E. Pulp Paper

Mag. Can., 1963, 459.

102 Meller, A. Holzforschung, 1965; 19: 118.

103 Aurell, R. Tappi, 1965; 48: 80.

104 Sjцberg, J., PhD Thesis STFI, 2002.

105 Fiserova, N., Opalena, E., Farkas, J. Cell.

Chem. Technol., 1986; 21: 419.

106 Hansson, J.A. Svensk. Papperstidn., 1970;

73(3): 49.

107 Jacob, A., Dahlman, O., Sjцberg, J. Biomacromolecules,

2001; 2(3): 894.

108 Dahlman, O., Jacob, A., Sjцberg, J. Cellulose,

2003; 10(4): 325.

109 Larson, P.T. ACS Symposium Series