Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Макулатура стр 1147.doc
Скачиваний:
8
Добавлен:
20.11.2018
Размер:
5.28 Mб
Скачать

Important dissolving pulps, derived from hardwood, softwood and cotton linters

and produced according to acid sulfite and PHK procedures.

1060

11.3 Dissolving Grade Pulp 1061

Tab. 11.16 Chemical and physical characterization profile of selected dissolving pulps.

Parameters Viscose products Cellulose acetate High-viscosity ether

Pulp origin

Wood HardwoodHardwood Softwood Hardwood Softwood Cotton

Process

Cooking

Bleaching

Method Reference Acid sulfite

ECF

PHK

TCF

Acid sulfite

ECF

PHK

ECF

Acid sulfite

ECF

Soda

ECF

Chemical properties

Chemical Composition

Carbohydrates [25]

Glucan rel% AX/EC-PAD 97.0 96.3 97.5 98.8 94.8 99.6

Mannan rel% AX/EC-PAD 0.5 0.2 1.2 0.2 2.0 0.0

Xylan rel% ax/ec-pad 2.5 3.5 1.3 1.0 3.2 0.4

Extractives, Resins

Acetone extractives % ISO 624 (mod.) 0.2 0.1 0.05 0.05 0.07 0.06

DCM extractives % ISO 624 0.07 0.06 0.04 0.02 0.06 0.03

Kappa number T 236 cm-85 mod. 0.3 0.3 0.2 0.2 0.5 0.1

Organohalogen (OX) ppm DIN 52355 100 25 55 100 130 120

Total ash % LAG Z614 0.1 0.08 0.1 0.07 0.2 0.02

Metal ions

Mn ppm ICP-AES 0.2 0.2 0.3 0.6 0.5 0.5

Fe ppm ICP-AES 3 5 3 3 5 10

Mg ppm ICP-AES 10 50 10 15 100 15

Ca ppm ICP-AES 15 15 15 20 100 60

Si ppm ICP-AES 20 20 15 10 15 10

Macromolecular properties

Viscosity mL g–1 scan-cm 15:99 500 450 820 730 1500 2000

Mn kg mol–1 GPC-MALLS [36] 56 58 100 121 119 722

Mw kg mol–1 GPC-MALLS [36] 250 175 400 340 950 1300

PDI GPC-MALLS [36] 4.5 3.0 4.0 2.8 8.0 1.8

DP < 100 wt% GPC-MALLS [36] 5.0 2.8 2.0 1.5 0.0 0.0

DP > 2000 wt% GPC-MALLS [36] 25.0 15.0 45.0 38.0 65.0 95.0

1062 11 Pulp Properties and Applications

Tab. 11.16 Continued.

Parameters Viscose products Cellulose acetate High-viscosity ether

Pulp origin

Wood HardwoodHardwood Softwood Hardwood Softwood Cotton

Process

Cooking

Bleaching

Method Referencea Acid sulfite

ECF

PHK

TCF

Acid sulfite

ECF

PHK

ECF

Acid sulfite

ECF

Soda

ECF

Functional Groups

Copper number % ZM IV/8/70 1.0 0.4 0.6 0.3 0.5 0.2

Carbonyl lmol g–1 CCOA [21] 14.0 6.0 9.0 4.0 6.0 3.0

Carboxyl

lmol g–1 methylene blue [95] 30.0 28.0 25.0 16.0 50.0 10.0

Physical properties

Single Fiber

Water retention value (WRV) % DIN 53814 73 71 71 80 71 54

Pulp sheet

Brightness % ISO ISO 2470 93.0 89.0 94.0 92.5 85.0 85.0

Basis weight g m–2 ISO 638 800 770 n.d. 700 720 600

Density

g cm–3 ISO 438 0.913 0.600 n.d. 0.530 0.570 n.d.

Application Tests

Viscose filterability [68] __ __

Cellulose ether (e.g. MHPC, MHEC,

CMC)

__ __ __ __

Cellulose acetate

[96] __ __

Alkali resistance

R10 % DIN 54355 89.0 92.0 93.5 97.7 93.8 98.5

R18

% DIN 54355 95.0 96.5 96.5 98.2 95.0 99.2

References 1063

References

Sections 11.1–11.2

1 Niskanen, K., Paper Physics. Papermaking

Science and Technology, J. Gullichsen,

H. Paulapuro, Eds. Vol. 16. Fapet Oy,

1998.

2 Levlin, J.-E., L. Sцderhjelm, Pulp and

Paper Testing. Papermaking Science and

Technology, J. Gullichsen, H. Paulapuro,

Eds. Vol. 17. Fapet Oy, 1999.

3 Rydholm, S.A., Pulping Processes.

Malabar, Florida 1965: Robert E. Krieger

Publishing Co., Inc., 1965: 1135–1166.

4 Young, R.A., Comparison of the properties

of chemical cellulose pulps. Cellulose,

1994; 1: 107–130.

5 Jayme, G., A.v. Kцppen, Strukturelle

und chemische Unterschiede zwischen

Sulfit- und Sulfatzellstoffen. Das Papier,

1950; 4(23/24): 455–462.

6 Luce, J.E., Radial distribution of properties

through the cell wall. Pulp Paper

Mag. Can., 1964: 419–423.

7 Jayme, G., A.v. Kцppen, Strukturelle

und chemische Unterschiede zwischen

Sulfit- und Sulfatzellstoffen. Das Papier,

1950; 4(21/22): 415–420.

8 Hamilton, J.K., N.S. Thompson,

A chemical comparison of kraft and sulphite

pulps. Pulp Paper Mag. Can., 1960:

263–272.

9 Yllner, S., B. Enstrцm, Studies of the

adsorption of xylan on cellulose fibres

during the sulphate cook. Part 1. Svensk.

Papperstidn., 1956; 59: 229–234.

10 Yllner, S., B. Enstrцm, Studies of the

adsorption of xylan on cellulosic fibres

during the sulphate cook. Part 2. Svensk.

Papperstidn., 1957; 60(15): 549–554.

11 Dahlmann, O., J. Sjoeberg. Comparative

study of different approaches for analyzing

carbohydrates at the surface of

chemical pulp fibers. In Seventh European

Workshop on Lignocellulosics

and Pulp. Turku/Abo, Finland: Abo

Akademi, 2002; 111–114.

12 Pettersson, S.E., S.A. Rydholm, Hemicelluloses

and paper properties of birch

pulps. III. Svensk. Papperstidn., 1961;

64(1): 4–17.

13 Page, D.H., The origin of the differences

between sulphite and kraft pulps.

J. Pulp Paper Sci., 1983; 9(1):

TR15–TR20.

14 Page, D.H., The mechanism of strength

development of dried pulps by beating.

Svensk. Papperstidn., 1985; 88(3):

R30–R35.

15 Scallan, A.M. In Fibre Water Interactions

in Papermaking. Clowes: London, 1978.

16 Koeppen, A.V., Structural and chemical

differences between sulfite and kraft

pulps. Tappi, 1964; 47(10): 589–595.

17 Sixta, H., R. Mцslinger, Characterization

of commercial paper grade pulps. R&D

Lenzing AG, Internal Report: Lenzing,

2004.

18 Molin, U., A. Teder, Importance of cellulose/

hemicellulose-ratio for pulp

strength. Nordic Pulp Paper Res. J., 2002;

17(1): 14–19.

19 Jenzen, C.A., The effect of stress applied

during drying on some of the properties

of individual pulp fibers. Tappi, 1964;

47(7): 412–418.

20 Rцhrling, J., et al., A novel method for

the determination of carbonyl groups in

cellulosics by fluorescence labeling. 2.

Validation and applications. Biomacromolecules,

2002; 3: 969–975.

21 Rцhrling, J., et al., A novel method for

the determination of carbonyl groups in

cellulosics by fluorescence labeling. 1.

Method development. Biomacromolecules,

2002; 3: 959–968.

22 Baldinger, T., A. Potthast, Evaluation of

keto groups generated along the cellulose

chain from combined GPC-CCOA

measurement. CD Laboratory, Internal

Report: Vienna, 2004.

23 Schelosky, N., T. Roder, T. Baldinger,

Molecular mass distribution of cellulosic

products by size exclusion chromatography

in DMAc/LiCl. Das Papier,

1999; 53(12): 728–738.

24 Kettunen, J., et al., Aspects of strength

development in fibre produced by different

pulping methods. Pap. Puu, 1982;

Specialnummer 4: 205–211.

1064 11 Pulp Properties and Applications

Section 11.3

1 Treiber, E., Charakterisierung von Chemiefaserzellstoffen.

Das Papier, 1971:

25(12): 830–833.

2 Treiber, E., Probleme bei der Charakterisierung

von Chemiefaserzellstoffen.

Faserforschung und Textiltechnik, 1974;

25(9): 387–391.

3 Treiber, E., The viscose process surveyed

from an industrial and laboratory point

of view. Tappi J., 46(10), 594–600.

4 Klemm, D., et al., Comprehensive Cellulose

Chemistry. Vol. 1. Weinheim,Germany:

Wiley-VCH Verlag GmbH, 1998:

9–42.

5 Kleinert, T.N., Z. Angew. Chem., 1931;

44(39): 788.

6 Peter, W.,Herstellung von Kunstfaserzellstoff

nach dem Organosolv-AufschluЯverfahren.

Lenzinger Ber., 1986;

61: 12–16.

7 Sixta, H., et al., Evaluation of new organosolv

dissolving pulps. part I: Preparation,

analytical characterization and viscose

processability. Cellulose, 2004; 11:

73–83.

8 Kordsachia, O., S. RoЯkopf, R. Patt, Production

of spruce dissolving pulp with

the prehydrolysis-alkaline sulfite process

(PH-ASA). Lenzinger Ber., 2004; 83:

24–34.

9 Sixta, H., A. Borgards, New technology

for the production of high-purity dissolving

pulps. Das Papier, 1999; 53(4):

220–234.

10 Rosenau, T., et al., The chemistry of

side reactions and byproduct formation

in the system NMMO/cellulose (Lyocell

process). Prog. Polym. Sci., 2001; 26:

1763–1837.

11 Rosenau, T., et al., Isolation and identification

of residual chromophores in cellulosic

materials. Polymer, 2004; 45:

6437–6443.

12 White, P., Lyocell: the production process

and market development. In Regenerated

Cellulose Fibres, C. Woodings, Ed.

Woodhead Publishing Limited: Cambridge,

England, 2001: 62–87.

13 Lenz, J., et al., Der EinfluЯ der Begleitsubstanzen

des Zellstoffs auf Verarbeitbarkeit

und Fasereigenschaften im

ViskoseprozeЯ. Lenzinger Ber., 1981; 51:

10–13.

14 Jayme, G., N. Nikoliew, The reactivity of

the hemicelluloses of pulp in the

xanthation reaction. Angew. Chemie,

1948; A60: 15–18.

15 Micic, M., Correlation between the filtration

constant and alpha-cellulose,

pentosans, brightness, impurities,

mineral substances, resins, and viscose

of pulp. Hemijska Vlakna, 1988; 28(3):

9–13.

16 Siclari, F., Polynosic fibres from different

types of dissolving pulps. Pure Appl.

Chem., 1967; 14(3–4): 423–433.

17 Wilson, J.D., R.S. Tabke. Influence of

hemicelluloses on acetate processing in

high catalyst systems. In Dissolving

Pulps Conference. Atlanta, GA: TAPPI,

1973: 55–68.

18 Adorjan, I., et al., Discoloration of cellulose

solutions in N-methylmorpholine-

N-oxide (Lyocell). Part 1: Studies on

model compounds and pulps. Cellulose,

2005; 12: 51–57.

19 Wilson, J.D., R.S. Tabke, Influence of

hemicelluloses on acetate processing in

high catalyst systems. Tappi, 1974;

57(8): 77–80.

20 Gardner, P.E., M.Y. Chang. The acetylation

of native and modified hemicelluloses.

In Dissolving Pulps Conference.

Atlanta: Tappi, 1973: 93–95.

21 Neal, J.L., Factors affecting the solution

properties of cellulose acetates. J. Appl.

Polymer Sci., 1965; 9(3): 947–961.

22 Borgards, A., H. Sixta, Evaluation of Cellulose

Triacetate. Lenzing AG, Internal

Report, 2000.

23 Conca, R.L., J.K. Hamilton, H.W.

Kircher, Haze in cellulose acetate. Tappi,

1963; 46(11): 644–648.

24 Wells, F.L., W.C. Schattner, A. Walker,

Hemicellulose and false viscosity in cellulose

acetate. Tappi, 1963; 46(10):

581–586.

25 Sixta, H. et al., Characterisation of

alkali-soluble pulp fractions by chromatography,

11th Intern. Symp. on Wood

and Pulping Chem. (ISWPC), Nice,

France, 2001: 655–658.

26 Swan, B., Extractives of unbleached and

bleached prehydrolysis-kraft pulp from

References 1065

Eucalyptus globulus. Svensk. Papperstidn.,

1967; 70(19): 616–619.

27 Rydholm, S.A., Production and properties

of eucalyptus pulp. Papier, 1966;

20(10): 711–720.

28 Croon, I., Resins, waxes, and fats present

in wood pulp. Papier, 1965; 19(10A):

711–719.

29 Assarsson, A., H. Jonsйn, O. Samuelson,

Influence of resin in viscose upon the

clogging of spinnerets. Svensk Papperstidn.,

1968; 5: 137–141.

30 Gцransson, S., Effect of pulp extractives

in the viscose process. Svensk. Papperstidn.,

1968; 16: 533–543.

31 Sixta, H., The use of aspen wood for the

production of viscose pulp. R&D

Lenzing AG: Lenzing, 2004.

32 Rдsдnen, R.H., J. Erva, M. Saaristo.

Evaluation of viscose pulp at a pulp

mill. In Dissolving Pulp Conference.

Atlanta, GA.: Tappi, 1973: 25–41.

33 Berzings, V., J.E. Tasman, The relationship

of the kappa number to the lignin

content of pulp materials. Pulp Paper

Canada, 1957; 9: 154–158.

34 Chinchloe, P.R. Residual lignin in dissolving

grade pulp. In Dissolving Pulps

Conference. Atlanta, GA: Tappi, 1973.

35 Bergner, C., B. Philipp, S. Schulze,

Untersuchungen zur Menge und Verteilung

mineralischer Verunreinigungen

in Buchensulfit-Textilzellstoffen. Zellstoff

und Papier, 1990; 39(1): 11–16.

36 Schelosky, N., T. Rцder, T. Baldinger,

Molecular mass distribution of cellulose

products by size exclusion chromatography

in DMAC/LiCl. Das Papier, 1999;

53(12): 728–738.

37 Hermans, P.H., The analogy between

the mechanism of deformation of cellulose

and that of rubber. J. Phys. Chem.,

1941; 45: 827–836.

38 Avela, E., et al., Sulphite pulps for

HWM-fibres. Pure Appl. Chem., 1967;

14(3–4): 289–301.

39 Treiber, E.E., Zellstoffe fьr Modalfasern.

Lenzinger Ber., 1988; 64: 19–22.

40 Treiber, E. Gegenwдrtiger Stand und

Zukunftstrend des Viskoseverfahrens

und seines Rohstoffes. In 4th International

Symposium on Man-Made Fibres.

Kalinin, USSR, 1986.

41 Rцhrling, J., et al., A novel method for

the determination of carbonyl groups in

cellulosics by fluorescence labeling. 2.

Validation and applications. Biomacromolecules,

2002; 3: 969–975.

42 Schleicher, H. and H. Lang, Carbonylund

Carboxylgruppen in Zellstoffen

und Celluloseprodukten. Das Papier,

1994; 12: 765–768.

43 Beyer, M., C. Bдurich, K. Fischer, Mechanism

of light- and thermal-induced yellowing

of pulps. Das Papier, 1995;

49(10A): V8–V14.

44 Beving, H.F.G., O. Theander, Degradation

of methyl alpha-D-glucohexo-1,5-

dialdopyranoside in aqueous solution.

Acta Chim. Scand., Ser. B, 1975; 29(5):

577–581.

45 Baldinger, T., A. Potthast, Evaluation of

keto groups generated along the cellulose

chain from combined GPC-CCOA

measurement. CD Laboratory, Internal

Report: Vienna, 2004.

46 Sixta, H., R. Mцslinger, Influence of

ozone bleaching with Z-stage in various

positions within a TCF sequence on

thermal-induced discoloration of a

beech sulfite dissolving pulp. R&D

Lenzing AG: Lenzing, 2004.

47 Gratzl, J.S., Lichtinduzierte Vergilbung

von Zellstoffen – Ursachen und Verhьtung.

Das Papier, 1985; 39(10A):

V14–V23.

48 Philipp, B., J. Baudisch, W. Stцhr, Zum

EinfluЯ einiger chemischer Faktoren

auf den thermischen Abbau der Cellulose.

Cellulose Chem. Technol., 1972; 6:

379–392.

49 Buchert, J., et al., Significance of xylan

and glucomannan in the brightness

reversion of kraft pulps. Tappi, 1997;

80(6): 165–171.

50 Fink, H., E. Walenta, Rцntgenbeugungsuntersuchungen

zur ьbermolekularen

Struktur von Cellulose im

VerarbeitungsprozeЯ. Das Papier, 1994;

48: 739–748.

51 Kunze, J., A. Ebert, H.-Fink, Characterization

of cellulose and cellulose ethers

by means of 13C-NMR spectroscopy. Cellulose

Chem. Technol., 2000; 34: 21–34.

52 Baldinger, T., J. Moosbauer, H. Sixta,

Supermolecular structure of cellulosic

materials by FTIR spectroscopy calibrat1066

11 Pulp Properties and Applications

ed by WAXS and 13C NMR. Lenzinger

Ber., 2000; 79: 15–17.

53 Fink, H.-P., et al., Evaluation of new

organosolv dissolving pulps. Part II:

Structure and NMMO processability of

the pulps. Cellulose, 2004; 11: 85–98.

54 Akim, E.L., Manufacture and chemical

treatment of dissolving pulps. Tappi,

1978; 61(9): 111–114.

55 Steege, H.H., B. Philipp, Production,

characterization, and use of microcrystalline

cellulose. Zellst. Pap., 1974; 23(3):

68–73.

56 Sixta, H., Comparative evaluation of

TCF bleached hardwood dissolving

pulps. Lenzinger Ber., 2000; 79: 119–128.

57 Schleicher, H., B. Philipp, Effect of activation

on the reactivity of cellulose. Das

Papier, 1980; 34(12): 550–555.

58 Philipp, B., R. Lehmann, C. Rauscher,

Influence of cellulose material on the

course of alkali cellulose formation. Faserforschung

und Textiltechnik, 1959; 10:

22–35.

59 Hinck, J.F., R.L. Casebier, J.K. Hamilton,

Dissolving Pulp Manufacturing. In

Sulfite Science & Technology, J.K.O. Ingruber,

P.E. Al Wong, Eds. TAPPI, CPPA:

Atlanta, 1985: 213–243.

60 Wallis, A.F.A., R.H. Wearne, Preparation

of chemical cellulose from radiata

pine bisulfite pulps without using chlorine-

containing reagents. Appita, 1992;

45(4): 239–242.

61 Sioumis, A.A., A.F.A. Wallis, Chemical

celluloses derived from Pinus radiata

wood pulps for nitrocellulose preparation.

Polymer Int., 1991; 25: 203–209.

62 El-Din, N.M.S., F.F.A. El-Megeid, The

effect of cold alkali pretreatment on the

reactivity of some cellulosic pulps

towards acetylation. Holzforschung,

1994; 48: 496–500.

63 Temming, H., H. Grunert, Temming

linters: technical informations about

cotton cellulose, ed. Peter Temming

AG. Glьckstadt: J.J. Augustin, 1972.

64 Purz, H.J., H. Graf, H.-Fink, Electron

microscopic investigations of fibrillar

and coagulation structure of cellulose.

Das Papier, 1995; 49(12): 714–730.

65 Yllner, S., B. Enstrцm, Studies of the

adsorption of xylan on cellulose fibres

during the sulphate cook. Part 1. Svensk.

Papperstidn., 1956; 59: 229–234.

66 Yllner, S., B. Enstrцm, Studies of the

adsorption of xylan on cellulosic fibres

during the sulphate cook. Part 2. Svensk.

Papperstidn., 1957; 60(15): 549–554.

67 Sixta, H., Investigation of xylan precipitation

during kraft cooking. R&D,

Lenzing AG: Lenzing, 2002: 8.

68 Hьpfl, J., J. Zauner, Testing dissolving

pulps by use of a laboratory-scale viscose

plant.. Das Papier, 20(3): 125–132.

69 Dahlmann, O., J. Sjoeberg. Comparative

study of different approaches for analyzing

carbohydrates at the surface of

chemical pulp fibers. In Seventh European

Workshop on Lignocellulosics

and Pulp. Turku/Abo, Finland: Abo

Akademi, 2002: 111–114.

70 Sjoeberg, J., et al., Fiber surface and

inner layer analysis of the polysaccharide

composition in sulfate and sulfite

dissolving pulps using enzymatic peeling

and CZE. In 227th ACS National

Meeting, Anaheim, CA., 2004.

71 Luce, J.E., Radial distribution of properties

through the cell wall. Pulp Paper

Mag. Can., 1964: 419–423.

72 Sixta, H., Preparation and characterization

of spruce and beech dissolving

pulps prepared by both acid sulfite and

prehydrolysis kraft cooking. R&D,

Lenzing AG: Lenzing, 2002.

73 Gruber, E., S. Ezzat, J. Schurz, Zellstoff-

Eigenschaften und Faserlдnge. II. Chemische

Reaktivitдt bei homogenen und

heterogenen Reaktionen. Das Papier,

1976; 30(4): 133–138.

74 Dubach, M., M. Rutishauser, Deresinification

of sulfite pulps by fiber fractionation.

Das Papier, 1957; 11: 37–43.

75 Yaldez, R., Fractionation of beech dissolving

pulp. Lenzinger Ber., 2000; 79:

143–148.

76 Maloney, T.C., T. Johansson,

H. Paulapuro, Removal of water from

the cell wall during drying. Paper Technol.,

1998; 39(6): 39–42, 44–57.

77 Maloney, T.C., H. Paulapuro, The formation

of pores in the cell wall. J. Pulp

Paper Sci., 1999; 25(12): 430–436.

78 Stone, J.E., A.M. Scallan, The effect of

component removal upon the porous

structure of the cell wall of wood. II.

References 1067

Swelling in water and the fiber saturation

point. Tappi, 1967; 50(10): 496–501.

79 Stone, J.E., A.M. Scallan, Structural

model for the cell wall of water-swollen

wood pulp fibers based on their accessibility

to macromolecules. Cellulose

Chem. Technol., 1968; 2(3): 343–358.

80 Bredereck, K., W.A. Schick, E. Bader,

Characterization of the pore structure of

water-swollen cellulose fibers. Makromolekulare

Chemie, 1985; 186(8):

1643–1655.

81 Bredereck, K., A. Blueher, A. Hoffmann-

Frey, The determination of pore structure

of cellulose fibers by exclusion

measurement. Papier, 1990; 44(12):

648–656.

82 Jayme, G., L. Rothamel, Development of

a standard centrifugal method for determining

the swelling values of pulps.

Papier, 1948; 2: 7–18.

83 Scallan, A.M., J.E. Carles, Correlation of

the water retention value with the fiber

saturation point. Svensk. Papperstidn.,

1972; 75(17): 699–703.

84 Urquhart, A.R., The mechanism of

adsorption of water by cotton. J. Textile

Inst., 1929; 20: T125–T132.

85 Newman, R.H., J.A. Hemmingson. Cellulose

cocrystallization in hornification

of kraft pulp. In 9th International Symposium

of Wood and Pulp Chemistry.

Montreal, Canada, 1997.

86 Rцder, T., H. Sixta. Thermal treatment

of cellulose pulps and its influence to

cellulose reactivity. In ISWPC. Madison,

WI, 2003.

87 Gruber, E., C. Schneider, W. Schempp,

Measuring the extent of hornification of

pulp fibers. Int. Papierwirtsch., 2001; 4:

T72–T75.

88 Fischer, K., W. Goldberg, M. Wilke,

Radiation pre-treatment of pulp for the

production of regenerated fibre production.

Lenzinger Ber., 1985; 59(8): 32–37.

89 Kuhn, W., Kinetics of the destruction of

high-molecular chains. Ber. Chem.

Dtsch. Ges., 1930; 63: 1503–1509.

90 Philipp, B., Struktur und Reaktivitдt der

Cellulose als Schwerpunkte der Celluloseforschung

im Institut fьr Polymerenchemie

in Teltow-Seehof. Das Papier,

1991; 12: 764–772.

91 Krдssig, H.A., Cellulose: Structure, Accessibility

and Reactivity. Polymer Monographs.

M.B. Huglin, Ed.. Vol. 11. Gordon

and Breach Science Publishers,

1993: 258–323.

92 Schenker, C., M.A. Heath, Development

of high purity dissolving wood pulp for

tire cord production. Tappi, 1959; 42(8):

709–712.

93 Patt, R., D.L.-K. Wang, Qualitдtsbeurteilung

von Chemiezellstoffen. Teil 2:

Alkalilцslichkeit und Gesamtzuckeranalyse.

Das Papier, 1987; 41(1): 7–12.

94 Methylenblue method, In Methods in

Carbohydrate Chemistry, Academic

Press, New York, ed.: R.L. Whistler, Vol.

III, 35–36.

95 Steinmeier, H., Acetate manufacturing,

process and technology. Chemistry of

Cellulose Acetylation. In Macromol.

Symp. 208; [Cellulose Acetates: Properties

and Applications, ed.: R. Rustemeyer,

Wiley-VCH], 2004, 49–60.

1069

II

Mechanical Pulping

Jьrgen Blechschmidt, Sabine Heinemann, and Hans-Ulrich Sьss

Handbook of Pulp. Edited by Herbert Sixta

Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim