Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Макулатура стр 1147.doc
Скачиваний:
8
Добавлен:
20.11.2018
Размер:
5.28 Mб
Скачать

7.3 Shows the fractional composition according to the McNett principle versus

the yield of various pulps. The amount of long fibers in mechanical pulps (fraction

McNett R28) increases in the range SGW, RMP, TMP, CTMP more to the

debit of the middle fraction than of the fines fraction.

The bonding ability of mechanical pulp fractions can vary widely, as shown in

Fig. 7.4 [41]. The high bonding ability of middle fractions is clear.

1138 7 Latency and Properties of Mechanical Pulp

Fig. 7.3 Comparative fractional composition of various pulps

according to the McNett principle [40].

Fig. 7.4 Tensile index versus apparent density for the coarse

fiber fraction, middle fraction and fines fraction of different

mechanical pulps (according to Mohlin [41]).

Mechanical pulps typically form bulky sheets with high light scattering

(Fig. 7.5). Thus, it is possible to produce paper with acceptable stiffness and opacity

at a considerably lower basis weight by using a mechanical pulp than a chemical

pulp. When compared at the same freeness levels, TMP normally has the

highest bulk and CTMP the lowest bulk of mechanical pulps. With regard to the

mechanical pulps in Fig. 7.5, groundwood pulps usually exhibit the best optical

properties (Fig. 7.5, below), whereas TMP and CTMP exhibit the best strength

properties (Fig. 7.5, left and right). Because of their good strength properties,

these mechanical pulps require less reinforcement pulps when manufacturing,

7.2 Properties of Mechanical Pulp 1139

Fig. 7.5 Tensile index, tear index, and light-scattering

coefficient of different pulps depending on freeness [42].

for example, LWC paper. This compensates their lower light-scattering power and

makes their use economically viable.

Hцglund et al. [43] have compared the same types of mechanical pulps with

chemical pulps according to their strength properties. The mechanical pulps were

from spruce wood (SGW, RMP, TMP, and CTMP), and the chemical pulps from

pine were either unbleached (USB) or semi-bleached (SBK). The possible property

fields for these pulps are illustrated in Figs. 7.6–7.8.

Strength properties increased in the range SGW, RMP, TMP, CTMP, USB, and

SBK. The tear resistance of CTMP pulps was close to that of unbleached chemical

pulp USB (Fig. 7.6). The tensile index of CTMP covered large parts of the semibleached

chemical pulp SBK and unbleached chemical pulp USB, but at lower

apparent densities (Fig. 7.7). When considering the light-scattering coefficient,

1140 7 Latency and Properties of Mechanical Pulp

7.2 Properties of Mechanical Pulp

Fig. 7.6 Tear resistance versus tensile index for various

mechanical pulps compared with chemical pulps.

Fig. 7.7 Tensile index versus apparent density for various

mechanical pulps compared with chemical pulps.

SGW had the highest values, followed by RMP and TMP. The light-scattering

coefficient of CTMP was in the same range as TMP, but at higher levels of tensile

index. The chemical pulps had the lowest light-scattering coefficient, and could be

distinguished by type (USB or SBK) (Fig. 7.8).

1141

7 Latency and Properties of Mechanical Pulp

Fig. 7.8 Light-scattering coefficient versus tensile index for

various mechanical pulps compared with chemical pulps.

Selected properties from different mechanical pulps, made from Norway spruce

and compared at freeness level 40 mL, are listed in Tab. 7.1. General quality

requirements of mechanical pulp for use in LWC and SCA grades are detailed in

Tab. 7.2.

Tab. 7.1 Properties of mechanical pulps for printing paper

grades (Norway spruce, CSF 40mL).

Parameter Unit Groundwood Pressure

groundwood

TMP

Minishives % 0.1 0.1 <0.1

Coarse fibers (R14) % 1 3 10

Long fibers (P14/R28) % 11 22 30

Fines (P200) % 38 33 30

Fiber length mm 0.65 0.85 1.5

Apparent density kg m–3 520 510 500

Gurley s 150 200 250

Tensile index Nm g–1 35 43 52

Tear index mNm2 g–1 3.2 4.2 7.2

Scott Bond J m–2 280 320 250

Light scattering coefficient m2 kg–1 75 72 60

Brightness % 65 64 62

1142

References

Tab. 7.2 General quality requirements of mechanical pulp for use in LWC and SCA grades.

Pulp grade SGW PGW TMP TMP

Paper grade Unit SC/LWC SC/LWC SC LWC

Freeness mL 30–40 30–40 30–40 40–50

Shives content % <0.05 <0.05 <0.05 <0.05

Coarse fibers (R14) % <1.0 <1.0 <7.0 <3.0

Long fibers (P14/R28) % 10–15 14–20 28–33 22–27

Fines (P200) % >36 >32 >28 >28

Apparent density kg m–3 450–500 440–500 450–520 450–500

Tensile index Nm g–1 >40 >45 >50 >50

Tear index mNm2 g–1 >3.5 >4.5 >7.0 >6.5

Light-scattering coefficient m2 kg–1 >70 >68 >58 >58

1143

References

1 vdp Verband Deutscher Papierfabriken

e.V.

2 Sittauer, H.L., Friedrich Gottlob Keller,

Leipzig, 1982.

3 Goring, D.A.J., Thermal softening of

lignin, hemicellulose and cellulose.

Pulp Paper Mag. Can., 1963; 64(12):

T517–T527.

4 Styan, G.E., Bramshall, A.E., Ligninsolvation

improves mechanical pulp

processing. Pulp Paper Can., 1979;

80(1): 74–77.

5 Luhde, F., Temperature within the

grinding zone. Part 1. Pulp Paper Mag.

Can., 1959; 60(9): T269–T271.

6 Sьttinger, R., The Technology of the Wood

Grinding Process. Heidenheim: Voith

Forschung und Konstruktion, Nr. 26,

1979.

7 Steenberg, M.B., Nordstrand, A., Production

and dissipation of frictional

heat in the mechanical wood grinding

process. Tappi J., 1962; 45(4): 333–336.

8 May, W.D., Atack, D., A laboratory study

of a new mechanical pulping process.

Pulp Paper Mag. Can., 1965; 66(8):

T422–T435.

9 Atack, D., Pye, I.T., The measurement

of grinding zone temperature. Pulp

Paper Mag. Can., 1964; 65(9): T363–

T376.

10 Atack, D., Mechanics of Wood Grinding

Trend. The Activities of the Pulp and

Paper Research Institute of Canada,

Report No. 19, 1971: 6–11.

11 Powell, F.G., Luhde, F., Logan, K.C.,

Super groundwood by grinding. Pulp

Paper Mag. Can., 1965; 66(8): T399–

T406.

12 Aario, M., Haikkala, P., Lindahl, A.,

Pressure grinding – a new process for

mechanical pulping. Wochenbl. f. Papierfabr.,

1978; 106(19): 723–730.

13 Pietarila, V., Mitchell, G., Haikkala, P.,

Tuominen, R., PGWat high temperatures

and pressures. International

Mechanical Pulping Conference,

Vancouver, Canada, Preprints, CPPA,

Montreal, 1987: 19.

14 Pasanen, K., Peltonen, E., Haikkala, P.,

Liimatainen, H., Experiences using

super-pressurized groundwood at a

Finnish supercalender paper mill.

Tappi J., 1991; 74(12): 63.

1144 7 Latency and Properties of Mechanical Pulp

15 Murtola, C., Peltonen, E., Industrial

pressure grinding at low shower water

temperatures in a paper mill. PTSTUD-

Symposium Technology of Chemical

and Mechanical Pulp 1995, PTS Verlag

Mьnchen, 1995.

16 Valmet, Groundwood Systems, Pressure

Groundwood, Tampere, 1996.

17 Tuovinen, O., Liimatainen, H., Fibers,

fibrils and fractions – an analysis of

various mechanical pulps. Pap. Puu,

1994; 76(8): 508–515.

18 Asunmaa, P., The selection, process

flowcharts, optimization and results

obtained from the new PGW-S mill

at the Kaukas Oy Voikkaa paper mill in

Finland. Annual Meeting CPPA Montreal,

Proceedings, 1993: B71.

19 Giertz, H.W., Different qualities of

groundwood, refiner mechanical pulp

and thermomechanical pulp, Wochenbl.

f. Papierfabr., 1976; 104(19): 736–737.

20 Atack, D., Heitner, C., State of the art of

chemimechanical wood pulping processes

for printing paper. Das Papier,

1982; 36(10A): V114–V127.

21 Beatson, R., Heitner, C., Atack, D.,

Factors affecting the sulphonation

of spruce. J. Pulp Paper Sci., 1984: 10(1):

J12.

22 Sьttinger, K., Analysis of energy

consumption in mechanical pulping.

Wochenbl. f. Papierfabr., 1979; 107(2):

40–43.

23 Strauss, J., Screening by classifying – a

more and more important process in

stock preparation. Zellstoff und Papier,

1981; 30(4): 170–176.

24 Дmmдlд, A., Fractionation of thermomechanical

pulp in pressure screening

an experimental study on the classification

of fibres with slotted screen

plates. Acta Universitatis Oululensis,

Technica, C156, 2001 (Thesis).

25 Papermaking Science and Technology.

Book 5, Mechanical Pulping. Fapet Oy

Helsinki 1999: 270.

26 Yu, C.J., DeFoe, R.J., Fundamental

study of screening hydraulics. Part 1:

Flow patterns at the fed-side surface of

screen baskets. Mechanism of fiber mat

formation and remixing. Tappi J., 1994;

77(9): 767–782.

27 Niinimдki, J., On the fundamentals of

pressure screening – an experimental

study of conditions and phenomena in

the screen basket. Acta Universitatis

Oululensis, Technica, C124, 1998 (Thesis).

28 Bliss, T., Screening in the Stock Preparation

System. Stock Preparation Short

Course, Atlanta, GA, USA, Proceedings,

1990: 59–75.

29 Kleinhappel, S., Lipponen, J., Jussila, T.,

Groundwood pulp quality improvements

with economical benefit by

improved screening efficiency. International

Mechanical Pulping Conference,

Ottawa, Canada, Proceedings, 1995:

267–270.

30 Schmidt, G., Schempp, W., Krause, T.,

Wasserlцsliche Holzschliffbestandteile,

Analyse und Auswirkung bei der Papierherstellung.

Das Papier, 1990; 44(10A):

V49–V55.

31 Roick, T., Schmidt, G., Schempp, W.,

Stцrstoffe in Holzstofffiltraten: Identifizierung,

Verдnderungen im Verlauf der

Bleiche, analytische Beurteilung der

Wirkung von Bekдmpfungsmitteln.

Wochenbl. f. Papierfabr., 1994; 122(12):

506–509.

32 Roick, T., Schempp, W., Krause, T.,

Holzstoff-Feinstoffe: einige Ursachen

ihrer schlechten Bleichbarkeit. Das

Papier, 1991; 45(10A): V23–V26.

33 Melzer, J., Stabilitдt von Natriumdithionit

in wдssrigen Lцsungen. Wochenbl.

f. Papierfabr., 1990; 118(22): 925–931.

34 Ellis, M.E., Hydrosulfite (dithionite)

bleaching. In: Pulp Bleaching, Principles

and Practice. Tappi Press, Atlanta, 1996:

500–501.

35 Fischer, K., Vergilbung von Hochausbeutezellstoff.

Das Papier, 1990;

44(10A): V11.

36 Sьss, H.U., Del Grosso, M., Schmidt,

K., Hopf, B., Options for bleaching mechanical

pulp with a lower COD load.

Appita Annual Conference, Proceedings,

2001.

37 Htun, M., Engstrand, P., Salmйn, L.,

The implication of lignin softening on

latency removal of mechanical and chemimechanical

pulps. J. Pulp Paper Sci.,

1988; 14(3): 109–112.

References 1145

38 Karojдrvi, R., Nerg, H., Latency in pressure

groundwood. International Mechanical

Pulping Conference, Vancouver,

Canada, Proceedings, 1987: 25–28.

39 Blechschmidt, J., About latency behavior

of mechanical pulps. Zellstoff und

Papier, 1976; 25(10): 293–298.

40 Sundholm, J., What is mechanical pulping?

In: Papermaking Science and Technology.

Book 5, Mechanical Pulping. Fapet

Oy Helsinki, 1999: 17–21.

41 Mohlin, U.-B., Properties of TMP fractions

and their importance for the quality

of printing papers. Part 1: Large variations

in properties within fractions are

observed. Svensk. Papperstidn., 1980; 16:

461–466.

42 Heikkurinen, A., Leskelд, L., The character

and properties of mechanical

pulps. In: Papermaking Science and

Technology. Book 5, Mechanical Pulping.

Fapet Oy Helsinki 1999: 395–413.

43 Hцglund, H., Modified thermomechanical

pulp in newsprint furnishes. International

Mechanical Pulping Conference,

Helsinki, Proceedings Vol. III,

1977: 17B.

1147

III

Recovered Paper and Recycled Fibers

Hans-Joachim Putz

Handbook of Pulp. Edited by Herbert Sixta

Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim