
- •2006, Isbn 3-527-30997-7
- •Isbn-13: 978-3-527-30999-3
- •Isbn-10: 3-527-30999-3
- •Volume 1
- •1.1 Introduction 3
- •Isbn: 3-527-30999-3
- •2.2 Outlook 59
- •4.1 Introduction 109
- •4.2.5.1 Introduction 185
- •4.3.1 Introduction 392
- •5.1 Introduction 511
- •6.1 Introduction 561
- •6.2.1 Introduction 563
- •6.4.1 Introduction 579
- •Volume 2
- •7.3.1 Introduction 628
- •7.4.1 Introduction 734
- •7.5.1 Introduction 777
- •7.6.1 Introduction 849
- •7.10.1 Introduction 887
- •8.1 Introduction 933
- •1 Introduction 1071
- •5 Processing of Mechanical Pulp and Reject Handling: Screening and
- •III Recovered Paper and Recycled Fibers 1147
- •1 Introduction 1149
- •2.2 Inorganic Components 1219
- •2.3 Extractives 1224
- •Isbn: 3-527-30999-3
- •Isbn: 3-527-30999-3
- •4680 Lenzing
- •Isbn: 3-527-30999-3
- •4860 Lenzing
- •Isbn: 3-527-30999-3
- •Introduction
- •Introduction
- •Isbn: 3-527-30999-3
- •1 Introduction
- •1.2 The History of Papermaking
- •1 Introduction
- •1.2 The History of Papermaking
- •1 Introduction
- •1.3 Technology, End-uses, and the Market Situation
- •1 Introduction
- •1.3 Technology, End-uses, and the Market Situation
- •1 Introduction
- •1.3 Technology, End-uses, and the Market Situation
- •1 Introduction
- •1.5 Outlook
- •150.000 Annual Fiber Flow[kt]
- •1 Introduction
- •1.5 Outlook
- •1 Introduction
- •Introduction
- •Isbn: 3-527-30999-3
- •Void volume
- •Void volume fraction
- •Xylan and Fiber Morphology
- •Initial bulk residual
- •4.2.5.1 Introduction
- •In (Ai) Model concept Reference
- •Initial value
- •Validation and Application of the Kinetic Model
- •Inititial
- •Volume.
- •Viscosity
- •Influence on Bleachability
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Impregnation
- •Introduction
- •International
- •Impregnation
- •4.3.4.2.1 Cellulose
- •Influence of Substituents on the Rate of Hydrolysis
- •140 116 Total so2
- •Xylonic
- •Viscosity Brightness
- •Xyl Man Glu Ara Furf hoAc XyLa
- •Initial NaOh charge [% of total charge]:
- •864 (Hemicelluloses), 2004: 254.
- •Introduction
- •Isbn: 3-527-30999-3
- •Introduction
- •Isbn: 3-527-30999-3
- •Introduction
- •Introduction
- •Isbn: 3-527-30999-3
- •Introduction
- •Xylosec
- •Xylan residues
- •Viscosity
- •Introduction
- •Viscosity
- •Viscosity
- •Introduction
- •Initiator Promoter Inhibitor
- •Viscosity
- •Viscosity
- •Viscosity
- •Introduction
- •Viscosity
- •Introduction
- •Intra-Stage Circulation and Circulation between Stages
- •Implications of Liquor Circulation
- •Vid Chalmers Tekniska
- •Introduction
- •It is a well-known fact that the mechanical properties of the viscose fibers
- •Increase in the low molecular-weight fraction [2]. The short-chain molecules represent
- •Isbn: 3-527-30999-3
- •In the cooking process or, alternatively, white liquor can be used for the cold
- •Is defined as the precipitate formed upon acidification of an aqueous alkaline solution
- •934 8 Pulp Purification
- •8.2 Reactions between Pulp Constituents and Aqueous Sodium Hydroxide Solution 935
- •Is essentially governed by chemical degradation reactions involving endwise depolymerization
- •80 °C [12]. Caustic treatment: 5%consistency ,
- •30 Min reaction time, NaOh concentrations:
- •8.2 Reactions between Pulp Constituents and Aqueous Sodium Hydroxide Solution
- •80 °C is mainly governed by chemical degradation reactions (e.G. Peeling reaction).
- •Investigated using solid-state cp-mas 13c-nmr spectroscopy (Fig. 8.4).
- •Indicates cleavage of the intramolecular hydrogen bond between o-3-h and o-5′,
- •8 Pulp Purification
- •Interaction between alkali and cellulose, a separate retention tower is not really
- •In the following section.
- •3% In the untreated pulp must be ensured in order to avoid a change in the supramolecular
- •8.3 Cold Caustic Extraction
- •Xylan content [%]
- •8 Pulp Purification
- •Is calculated as effective alkali (ea). Assuming total ea losses (including ea consumption
- •Xylan content [%]
- •8.3 Cold Caustic Extraction
- •120 °C (occasionally 140 °c). As mentioned previously, hce is carried out solely
- •Involved in alkaline cooks (kraft, soda), at less severe conditions and thus avoiding
- •8.4Hot Caustic Extraction 953
- •954 8 Pulp Purification
- •120 Kg NaOh odt–1, 90–240 min, 8.4 bar (abs)
- •8.4Hot Caustic Extraction 955
- •956 8 Pulp Purification
- •Into the purification reaction, either in the same (eo) or in a separate stage
- •960 8 Pulp Purification
- •8.4.1.5 Composition of Hot Caustic Extract
- •8.4Hot Caustic Extraction 961
- •Isbn: 3-527-30999-3
- •Xyloisosaccharinic acid
- •Inorganicsa
- •Inorganic compounds
- •Value (nhv), which better reflects the actual energy release, accounts for the fact
- •968 9 Recovery
- •It should be noted that the recycling of bleach (e.G., oxygen delignification) and
- •9.1 Characterization of Black Liquors 969
- •9.1.2.1 Viscosity
- •9.1.2.3 Surface Tension
- •9.1.2.5 Heat Capacity [8,11]
- •9.2 Chemical Recovery Processes
- •Is described by the empirical equation:
- •9 Recovery
- •Vent gases from all areas of the pulp mill. From an environmental perspective,
- •9.2.2.1 Introduction
- •In the sump at the bottom of the evaporator. The generated vapor escapes
- •Incineration, whereas sulphite ncg can be re-used for cooking acid preparation.
- •9 Recovery
- •Values related to high dry solids concentrations. The heat transfer rate is pro-
- •9.2 Chemical Recovery Processes
- •9.2.2.3 Multiple-Effect Evaporation
- •7% Over effects 4 and 5, but more than 30% over effect 1 alone.
- •9.2 Chemical Recovery Processes
- •Increasing the dry solids concentration brings a number of considerable advantages
- •9.2.2.4 Vapor Recompression
- •Is driven by electrical power. In general, vapor coming from the liquor
- •Vapor of more elevated temperature, thus considerably improving their performance.
- •9 Recovery
- •Is typically around 6 °c. The resulting driving temperature difference
- •Is low, and hence vapor recompression plants require comparatively large heating
- •Vapor recompression systems need steam from another source for start-up.
- •9 Recovery
- •Its temperature is continuously falling to about 180 °c. After the superheaters,
- •In the furnace walls, and only 10–20% in the boiler bank. As water turns into
- •9.2.3.1.2 Material Balance
- •Is required before the boiler ash is mixed. In addition, any chemical make-up
- •In this simplified model, all the potassium from the black liquor (18 kg t–1
- •Values for the chemicals in Eq. (11) can be inserted on a molar basis, equivalent
- •9.2 Chemical Recovery Processes
- •Input/output
- •9 Recovery
- •9.2.3.1.3 Energy Balance
- •In the black liquor, from water formed out of hydrogen in organic material, and
- •9.2 Chemical Recovery Processes
- •9.2.3.2 Causticizing and Lime Reburning
- •9.2.3.2.1 Overview
- •9.2.3.2.2 Chemistry
- •986 9 Recovery
- •Insoluble metal salts are kept low. Several types of filters with and without lime
- •Is, however, not considered a loss because some lime mud must be
- •988 9 Recovery
- •In slakers and causticizers needs special attention in order to avoid particle disintegration,
- •9.2 Chemical Recovery Processes 989
- •Ing disks into the center shaft, and flows to the filtrate separator. There, the white
- •9.2.3.2.4 Lime Cycle Processes and Equipment
- •It is either dried with flue gas in a separate, pneumatic lime mud dryer or is fed
- •990 9 Recovery
- •Its temperature falls gradually. Only about one-half of the chemical energy in the
- •9.2.3.3.2 Black Liquor Gasification
- •Inorganics leave the reactor as solids, and into high-temperature techniques,
- •In the bed. Green liquor is produced from surplus bed solids. The product gas
- •992 9 Recovery
- •Incremental capacity for handling black liquor solids. The encountered difficulties
- •10% Of today’s largest recovery boilers. When the process and material issues are
- •9.2 Chemical Recovery Processes 993
- •9.2.3.3.3 In-Situ Causticization
- •Is still in the conceptual phase, and builds on the formation of sodium titanates
- •9.2.3.3.4 Vision Bio-Refinery
- •Into primary and secondary recovery steps. This definition relates to the recovery
- •994 9 Recovery
- •Is largely different between sulfite cooking bases. While magnesium and
- •Introduction
- •In alkaline pulping the operation of the lime kiln represents an emission source.
- •Isbn: 3-527-30999-3
- •Is by the sophisticated management of these sources. This comprises their collection,
- •Ions, potassium, or transition metals) in the process requires the introduction
- •Industry”. Similarly guidelines for a potential kraft pulp mill in Tasmania [3]
- •Initially, the bleaching of chemical pulp was limited to treatment with hypochlorite
- •In a hollander, and effluent from the bleach plant was discharged without
- •In a heh treatment and permitted higher brightness at about 80% iso (using
- •Increasing pulp production resulted in increasing effluent volumes and loads.
- •10.2 A Glimpse of the Historical Development 999
- •It became obvious that the bleaching process was extremely difficult to operate in
- •In a c stage was detected as aox in the effluent (50 kg Cl2 t–1 pulp generated
- •1% Of the active chlorine is converted into halogenated compounds (50 kg active
- •In chlorination effluent [12] led to the relatively rapid development of alternative
- •1000 10 Environmental Aspects of Pulp Production
- •10.2 A Glimpse of the Historical Development
- •In 1990, only about 5% of the world’s bleached pulp was produced using ecf
- •64 Million tons of pulp [14]. The level of pulp still bleached with chlorine
- •10 000 Tons. These are typically old-fashioned, non-wood mills pending an
- •In developed countries, kraft pulp mills began to use biodegradation plants for
- •10 Environmental Aspects of Pulp Production
- •Indeed, all processes are undergoing continual development and further improvement.
- •Vary slightly different depending upon the type of combustion unit and the fuel
- •10.3Emissions to the Atmosphere
- •Volatile organic
- •In 2004 for a potential pulp mill in Tasmania using “accepted
- •10 Environmental Aspects of Pulp Production
- •Is woodyard effluent (rain water), which must be collected and treated biologically
- •10.4 Emissions to the Aquatic Environment
- •Is converted into carbon dioxide, while the other half is converted into biomass
- •Into alcohols and aldehydes; (c) conversion of these intermediates into acetic acid and
- •10 Environmental Aspects of Pulp Production
- •In North America, effluent color is a parameter which must be monitored.
- •It is not contaminated with other trace elements such as mercury, lead, or cadmium.
- •10.6 Outlook
- •Increase pollution by causing a higher demand for a chemical to achieve identical
- •In addition negatively affect fiber strength, which in turn triggers a higher
- •Introduction
- •2002, Paper-grade pulp accounts for almost 98% of the total wood pulp production
- •Important pulping method until the 1930s) continuously loses ground and finds
- •Importance in newsprint has been declining in recent years with the increasing
- •Isbn: 3-527-30999-3
- •Virtually all paper and paperboard grades in order to improve strength properties.
- •In fact, the word kraft is the Swedish and German word for strength. Unbleached
- •Importance is in the printing and writing grades. In these grades, softwood
- •In this chapter, the main emphasis is placed on a comprehensive discussion of
- •1010 11 Pulp Properties and Applications
- •Is particularly sensitive to alkaline cleavage. The decrease in uronic acid content
- •Xylan in the surface layers of kraft pulps as compared to sulfite pulps has been
- •80% Cellulose content the fiber strength greatly diminishes [14]. This may be due
- •Viscoelastic and capable of absorbing more energy under mechanical stress. The
- •11.2 Paper-Grade Pulp 1011
- •Various pulping treatments using black spruce with low fibril
- •In the viscoelastic regions. Fibers of high modulus and elasticity tend to peel their
- •1012 11 Pulp Properties and Applications
- •11.2 Paper-Grade Pulp
- •Viscosity mL g–1 793 635 833 802 1020 868 1123
- •Xylose % od pulp 7.3 6.9 18.4 25.5 4.1 2.7 12.2
- •11 Pulp Properties and Applications
- •Inorganic Compounds
- •11.2 Paper-Grade Pulp
- •Insight into many aspects of pulp origin and properties, including the type of
- •Indicate oxidative damage of carbohydrates).
- •In general, the r-values of paper pulps are typically at higher levels as predicted
- •Is true for sulfite pulps. Even though the r-values of sulfite pulps are generally
- •Is rather unstable in acid sulfite pulping, and this results in a low (hemicellulose)
- •11 Pulp Properties and Applications
- •Ing process, for example the kraft process, the cellulose:hemicellulose ratio is
- •Increases by up to 100%. In contrast to fiber strength, the sheet strength is highly
- •Identified as the major influencing parameter of sheet strength properties. It has
- •In contrast to dissolving pulp specification, the standard characterization of
- •Is observed for beech kraft pulp, which seems to correlate with the enhanced
- •11.2 Paper-Grade Pulp
- •11 Pulp Properties and Applications
- •Is significantly higher for the sulfite as compared to the kraft pulps, and indicates
- •11.2 Paper-Grade Pulp
- •Xylan [24].
- •11 Pulp Properties and Applications
- •11.2 Paper-Grade Pulp
- •11 Pulp Properties and Applications
- •Introduction
- •Various cellulose-derived products such as regenerated fibers or films (e.G.,
- •Viscose, Lyocell), cellulose esters (acetates, propionates, butyrates, nitrates) and
- •In pulping and bleaching operations are required in order to obtain a highquality
- •Important pioneer of cellulose chemistry and technology, by the statement that
- •11.3 Dissolving Grade Pulp
- •Involves the extensive characterization of the cellulose structure at three different
- •Is an important characteristic of dissolving pulps. Finally, the qualitative and
- •Inorganic compounds
- •11 Pulp Properties and Applications
- •11.3.2.1 Pulp Origin, Pulp Consumers
- •Include the recently evaluated Formacell procedure [7], as well as the prehydrolysis-
- •11.3 Dissolving Grade Pulp
- •Viscose
- •11 Pulp Properties and Applications
- •11.3.2.2 Chemical Properties
- •11.3.2.2.1 Chemical Composition
- •In the polymer. The available purification processes – particularly the hot and cold
- •11.3 Dissolving Grade Pulp
- •In the steeping lye inhibits cellulose degradation during ageing due to the
- •Is governed by a low content of noncellulosic impurities, particularly pentosans,
- •Increase in the xylan content in the respective viscose fibers clearly support the
- •11.3 Dissolving Grade Pulp
- •Instability. Diacetate color is measured by determining the yellowness coefficient
- •Xylan content [%]
- •11 Pulp Properties and Applications
- •Xylan content [%]
- •11.3 Dissolving Grade Pulp
- •11.3 Dissolving Grade Pulp
- •Is, however, not the only factor determining the optical properties of cellulosic
- •In the case of alkaline derivatization procedures (e.G., viscose, ethers). In industrial
- •11.3 Dissolving Grade Pulp
- •Viscose
- •Viscose
- •In order to bring out the effect of mwd on the strength properties of viscose
- •Imitating the regular production of rayon fibers. To obtain a representative view
- •11 Pulp Properties and Applications
- •Viscose Ether (hv) Viscose Acetate Acetate
- •Xylan % 3.6 3.1 1.5 0.9 0.2
- •1.3 Dtex regular viscose fibers in the conditioned
- •11.3 Dissolving Grade Pulp
- •Is more pronounced for sulfite than for phk pulps. Surprisingly, a clear correlation
- •Viscose fibers in the conditioned state related to the carbonyl
- •1038 11 Pulp Properties and Applications
- •In a comprehensive study, the effect of placing ozonation before (z-p) and after
- •Increased from 22.9 to 38.4 lmol g–1 in the case of a pz-sequence, whereas
- •22.3 To 24.2 lmol g–1. The courses of viscosity and carboxyl group contents were
- •Viscosity measurement additionally induces depolymerization due to strong
- •11 Pulp Properties and Applications
- •Increasing ozone charges. For more detailed
- •11.3 Dissolving Grade Pulp
- •Is more selective when ozonation represents the final stage according to an
- •11.3.2.3 Supramolecular Structure
- •1042 11 Pulp Properties and Applications
- •Is further altered by subsequent bleaching and purification processes. This
- •Involved in intra- and intermolecular hydrogen bonds. The softened state favors
- •11.3 Dissolving Grade Pulp
- •Interestingly, the resistance to mercerization, which refers to the concentration of
- •11 Pulp Properties and Applications
- •Illustrate that the difference in lye concentration between the two types of dissolving
- •Intensity (see Fig. 11.18: hw-phk high p-factor) clearly changes the supramolecular
- •11.3 Dissolving Grade Pulp
- •Viscose filterability, thus indicating an improved reactivity.
- •11 Pulp Properties and Applications
- •Impairs the accessibility of the acetylation agent. When subjecting a low-grade dissolving
- •Identification of the cell wall layers is possible by the preferred orientation of
- •Viscose pulp (low p-factor) (Fig. 11.21b, top). Apparently, the type of pulp – as well
- •11 Pulp Properties and Applications
- •150 °C for 2 h, more than 70% of a xylan, which was added to the cooking liquor
- •20% In the case of alkali concentrations up to 50 g l–1 [67]. Xylan redeposition has
- •11.3 Dissolving Grade Pulp
- •Xylan added linters cooked without xylan linters cooked with xylan
- •Viscosity
- •In the surface layer than in the inner fiber wall. This is in agreement with
- •11 Pulp Properties and Applications
- •Xylan content in peelings [wt%]
- •Xylan content located in the outermost layers of the beech phk fibers suggests
- •11.3.2.5 Fiber Morphology
- •11 Pulp Properties and Applications
- •50 And 90%. Moreover, bleachability of the screened pulps from which the wood
- •11.3.2.6 Pore Structure, Accessibility
- •11.3 Dissolving Grade Pulp
- •Volume (Vp), wrv and specific pore surface (Op) were seen between acid sulfite
- •11 Pulp Properties and Applications
- •Irreversible loss of fiber swelling occurs; indeed, Maloney and Paulapuro reported
- •In microcrystalline areas as the main reason for hornification [85]. The effect of
- •105 °C, thermal degradation proceeds in parallel with hornification, as shown in
- •Increased, particularly at temperatures above 105 °c. The increase in carbonyl
- •In pore volume is clearly illustrated in Fig. 11.28.
- •11.3 Dissolving Grade Pulp
- •Viscosity
- •11 Pulp Properties and Applications
- •Increase in the yellowness coefficient, haze, and the amount of undissolved particles.
- •11.3.2.7 Degradation of Dissolving Pulps
- •In mwd. A comprehensive description of all relevant cellulose degradation processes
- •Is reviewed in Ref. [4]. The different modes of cellulose degradation comprise
- •11.3 Dissolving Grade Pulp
- •50 °C, is illustrated graphically in Fig. 11.29.
- •11 Pulp Properties and Applications
- •In the crystalline regions.
- •11.3 Dissolving Grade Pulp
- •Important dissolving pulps, derived from hardwood, softwood and cotton linters
- •11.3 Dissolving Grade Pulp 1061
- •Xylan rel% ax/ec-pad 2.5 3.5 1.3 1.0 3.2 0.4
- •Viscosity mL g–1 scan-cm 15:99 500 450 820 730 1500 2000
- •1062 11 Pulp Properties and Applications
- •Isbn: 3-527-30999-3
- •Introduction
- •Isbn: 3-527-30999-3
- •1072 1 Introduction
- •Isbn: 3-527-30999-3
- •Inventor of stone groundwood. Right: the second version
- •1074 2 A Short History of Mechanical Pulping
- •In refining, the thinnings (diameter 7–10cm) can also be processed.
- •In mechanical pulping as it causes foam; the situation is especially
- •In mechanical pulping, those fibers that are responsible for strength properties
- •Isbn: 3-527-30999-3
- •In mechanical pulping, the wood should have a high moisture content, and the
- •In the paper and reduced paper quality. The higher the quality of the paper, the
- •1076 3 Raw Materials for Mechanical Pulp
- •1, Transversal resistance; 2, Longitudinal resistance; 3, Tanning limit.
- •3.2 Processing of Wood 1077
- •In the industrial situation in order to avoid problems of pollution and also
- •1078 3 Raw Materials for Mechanical Pulp
- •2, Grinder pit; 3, weir; 4, shower water pipe;
- •5, Wood magazine; 6, finger plate; 7, pulp stone
- •Isbn: 3-527-30999-3
- •4.1.2.1 Softening of the Fibers
- •1080 4 Mechanical Pulping Processes
- •235 °C, whereas according to Styan and Bramshall [4] the softening temperatures
- •Isolated lignin, the softening takes place at 80–90 °c, and additional water
- •4.1 Grinding Processes 1081
- •1082 4 Mechanical Pulping Processes
- •1, Cool wood; 2, strongly heated wood layer; 3, actual grinding
- •4.1.2.2 Defibration (Deliberation) of Single Fibers from the Fiber Compound
- •4 Mechanical Pulping Processes
- •Influence of Parameters on the Properties of Groundwood
- •In the mechanical defibration of wood by grinding, several process parameters
- •Improved by increasing both parameters – grinding pressure and pulp stone
- •In practice, the temperature of the pit pulp is used to control the grinding process,
- •In Fig. 4.8, while the grit material of the pulp stone estimates the microstructure
- •4 Mechanical Pulping Processes
- •4.1 Grinding Processes
- •Is of major importance for process control in grinding.
- •4 Mechanical Pulping Processes
- •4.1.4.2 Chain Grinders
- •Is fed continuously, as shown in Fig. 4.17.
- •Initial thickness of the
- •75 Mm thickness, is much thinner than that of a concrete pulp stone, much
- •4 Mechanical Pulping Processes
- •Include:
- •Increases; from the vapor–pressure relationship, the boiling temperature is seen
- •4 Mechanical Pulping Processes
- •In the pgw proves, and to prevent the colder seal waters from bleeding onto the
- •4.1 Grinding Processes
- •In pressure grinding, the grinder shower water temperature and flow are
- •70 °C, a hot loop is no longer used, and the grinding process is
- •4 Mechanical Pulping Processes
- •Very briefly at a high temperature and then refined at high
- •4.2 Refiner Processes
- •4 Mechanical Pulping Processes
- •Intensity caused by plate design and rotational speed.
- •4.2 Refiner Processes
- •1. Reduction of the chips sizes to units of matches.
- •2. Reduction of those “matches” to fibers.
- •3. Fibrillation of the deliberated fibers and fiber bundles.
- •1970S as result of the improved tmp technology. Because the key subprocess in
- •4 Mechanical Pulping Processes
- •Impregnation Preheating Cooking Yield
- •30%. Because of their anatomic structure, hardwoods are able to absorb more
- •Is at least 2 mWh t–1 o.D. Pulp for strongly fibrillated tmp and ctmp pulps from
- •4 Mechanical Pulping Processes
- •4.2 Refiner Processes
- •1500 R.P.M. (50 Hz) or 1800 r.P.M. (60 Hz); designed pressure 1.4 mPa
- •1500 R.P.M. (50 Hz) or 1800 r.P.M. (60 Hz); designed pressure 1.4 mPa;
- •4.2 Refiner Processes
- •4 Mechanical Pulping Processes
- •In hardwoods makes them more favorable than softwoods for this purpose. A
- •4.2 Refiner Processes
- •Isbn: 3-527-30999-3
- •1114 5 Processing of Mechanical Pulp and Reject Handling: Screening and Cleaning
- •5.2Machines and Aggregates for Screening and Cleaning 1115
- •In refiner mechanical pulping, there is virtually no such coarse material in the
- •1116 5 Processing of Mechanical Pulp and Reject Handling: Screening and Cleaning
- •5.2Machines and Aggregates for Screening and Cleaning
- •5 Processing of Mechanical Pulp and Reject Handling: Screening and Cleaning
- •5 Processing of Mechanical Pulp and Reject Handling: Screening and Cleaning
- •5.3 Reject Treatment and Heat Recovery
- •55% Iso and 65% iso. The intensity of the bark removal, the wood species,
- •Isbn: 3-527-30999-3
- •1124 6 Bleaching of Mechanical Pulp
- •Initially, the zinc hydroxide is filtered off and reprocessed to zinc dust. Then,
- •2000 Kg of technical-grade product is common. Typically, a small amount of a chelant
- •6.1 Bleaching with Dithionite 1125
- •Vary, but are normally ca. 10 kg t–1 or 1% on fiber. As the number of available
- •1126 6 Bleaching of Mechanical Pulp
- •6.2 Bleaching with Hydrogen Peroxide
- •70 °C, 2 h, amount of NaOh adjusted.
- •6.2 Bleaching with Hydrogen Peroxide
- •Is shown in Fig. 6.5, where silicate addition leads to a higher brightness and a
- •Volume (bulk). For most paper-grade applications, fiber volume should be low in
- •Valid and stiff fibers with a high volume are an advantage; however, this requires
- •1130 6 Bleaching of Mechanical Pulp
- •6.2 Bleaching with Hydrogen Peroxide
- •Very high brightness can be achieved with two-stage peroxide bleaching, although
- •In a first step. This excess must be activated with an addition of caustic soda. The
- •Volume of liquid to be recycled depends on the dilution and dewatering conditions
- •6 Bleaching of Mechanical Pulp
- •6 Bleaching of Mechanical Pulp
- •Is an essential requirement for bleaching effectiveness. Modern twin-wire presses
- •Is discharged to the effluent treatment plant. After the main bleaching stage, the
- •6.3 Technology of Mechanical Pulp Bleaching
- •1136 6 Bleaching of Mechanical Pulp
- •Isbn: 3-527-30999-3
- •7.3 Shows the fractional composition according to the McNett principle versus
- •1138 7 Latency and Properties of Mechanical Pulp
- •7.2 Properties of Mechanical Pulp 1139
- •Isbn: 3-527-30999-3
- •Introduction
- •Isbn: 3-527-30999-3
- •In Fig. 1.2, the development of recovered paper utilization and paper production
- •Is split into the usa, the cepi countries, and Germany. It is clear that since 1990,
- •5.8% For Germany and worldwide, and 5.9% for the cepi countries.
- •1150 1 Introduction
- •1 Introduction
- •Industry, environmentalists, governmental authorities, and often even the marketplace.
- •It is accepted that recycling preserves forest resources and energy used for
- •1 Introduction
- •Incineration. The final waste (ashes) can either be discarded or used as raw
- •Virgin fibers
- •74.4 % Mixed grades
- •Indonesia
- •Virgin fibers
- •Inhomogeneous sample Homogeneous sample
- •Variance of sampling Variance of measurement
- •1.Quartile
- •3.Quartile
- •Insoluble
- •Insoluble
- •Insoluble
- •Integral
- •In Newtonion liquid
- •Velocity
- •Increasing dp
- •2Α filter
- •0 Reaction time
- •Increasing interaction of probe and cellulose
- •Increasing hydrodynamic size
- •Vessel cell of beech
- •Initial elastic range
- •Internal flow
- •Intact structure
- •Viscosity 457
- •Isbn: 3-527-30999-3
- •1292 Index
- •Visbatch® pulp 354
- •Index 1293
- •1294 Index
- •Impregnation 153
- •Viscosity–extinction 433
- •Index 1295
- •1296 Index
- •Index 1297
- •Inhibitor 789
- •1298 Index
- •Index 1299
- •Impregnation liquor 290–293
- •1300 Index
- •Industries
- •Index 1301
- •1302 Index
- •Index 1303
- •Xylose 463
- •1304 Index
- •Index 1305
- •1306 Index
- •Index 1307
- •1308 Index
- •In conventional kraft cooking 232
- •Visbatch® pulp 358
- •Index 1309
- •In prehydrolysis-kraft process 351
- •Visbatch® cook 349–350
- •1310 Index
- •Index 1311
- •1312 Index
- •Viscosity 456
- •Index 1313
- •Viscosity 459
- •Interactions 327
- •1314 Index
- •Index 1315
- •Viscosity 459
- •1316 Index
- •Index 1317
- •Xylose 461
- •Index 1319
- •Visbatch® pulp 355
- •Impregnation 151–158
- •1320 Index
- •Index 1321
- •1322 Index
- •Xylan water prehydrolysis 333
- •Index 1323
- •1324 Index
- •Viscosity 459
- •Index 1325
- •Xylose 940
- •1326 Index
- •Index 1327
- •In selected kinetics model 228–229
- •4OMeGlcA 940
- •1328 Index
- •Index 1329
- •Intermediate molecule 164–165
- •1330 Index
- •Viscosity 456
- •Index 1331
- •1332 Index
- •Impregnation liquor 290–293
- •Index 1333
- •1334 Index
- •Index 1335
- •1336 Index
- •Impregnation 153
- •Index 1337
- •1338 Index
- •Viscose process 7
- •Index 1339
- •Volumetric reject ratio 590
- •1340 Index
- •Index 1341
- •1342 Index
- •Index 1343
- •1344 Index
- •Index 1345
- •Initiator 788
- •Xylose 463
- •1346 Index
- •Index 1347
- •Vessel 385
- •Index 1349
- •1350 Index
- •Xylan 834
- •1352 Index
Integral
distribution
1___ __9 ._ ___ __ ___ __ _ _________ ____ &_____ ______ _ _______"_ __'_
___'
___3 _ ________ ____ __________
_ ______ __ ________ ____ ___ _____ _ __ _______ __ _ _________ _____ _____'
_ __ _______ __ _ ___ __ B __ ____ __ ____ __ _______ ____ _ _ ___ _ ____
_____ ___ ____ __ ___ __ _______ ____ __ ____ ___ _____ _ __ __ ___ ______ _
___ __________ _ _____ __
__)__
- _2____ _ _ _____ __
_ ____ _ _________ ___ __&__ _ _____ ___ _ _____ _____ ____ _____ __ ___'
_ ____ 3__ __ ___ __ ____ ___ __ _____ ____ __ _ ______ _ ___ __ _ ___'
_&__ __ _ ___ _____ _ _____ __ ________&___ __ _ _ _"____ ______ _____ _ _
__ __ ________ _ _______ _______ _ _____ _ ____ ____ ___________ _ ______'
____ _________________
( ______ _ ___ _ __ __ _ ____ __ _ _____ _ _ __ __ __ _________ __
____ *_+_ __ __ _ _____ ____ _____ ____ _ __ _ __ ____ ___"__ _______
__ __ ___ _ _______ __ ____ 3 ___ _____ _________ _ ______ __ _ _______
__ ___ _ ___ __ _ __ __ _ ____ ___ ___ _________ _ _______ ____ ___
______ H____ ___I __ __________ _ ____ ______ ____ __ _________ ( _
_____ _ _____ ___ _,____ ___ ___ _ _ __ _ ___ _____ ____ ___ _________ _
_ ___ ____ ___ ___ ________ )__ _________ _ __ _ __ ______ ____ _____ ___ __'
_ __ _____ __ _______ __ ___ ___ ________ _ _ __ ____ __ __ __ _ ______ __
___ _______ _ "_____ _ _____ ____________ ___ ____ _ _______ _"___ _____'
____ __ ___ ___ ___ __ __ __ _______ _ _ _"____ _____ _ _ _______ _________
___ __ ____ ____ ___ __ __ _______ __ _ ___"___ _ _____
6___ ___ 02_____ ______ _ __ __ _________ %___ __ _____ __ _ __________
*__ _. _ _ ____ _ ____+_
3-CP(B
_)____&__Q_
________
3 ____ "___'___ ___ G___ ___ _D ____ ___ _ __________
____ _&_ ______ ____ __ ______ _ "____D
_______ ______ _ _ ___________ __ __
__ ____ _
3-2:2
_32G_
3 ____ ______________ ___ _D _____ ___ ___ _______
___ _____&___ _
3(GCP2:
_3(GCP__
3______ "___ __ _______
_______
2___ ______ ___ _______ ________
2_:: _ _ ___ _ ____ ________ 8____ _D __ _ ____ ____ _____ _ _____
__'_ ___ _
GB(F__3 G______________'______
_ ____
B _____ ____ ____ __ ____ _ ____
________ __ __ _ ___ __
:B:C _'_ ___ ___ _' "___
_______
__ ! "_ __ _____ __#_____ $___ ____ __%
__)____ _8<=*_
_____'_____' _____ _'____ "____ /3__:%*_01_C%_+_*%+C _)____&__Q_ _________
__ ________ __ ____ ____ ____ _ ____ __ +5? ___ ___ ___ "___&___ ___ _'
___ ________ ___ _ ____ __ ___ "___ __ _________ (___________ ______ ______'
_____ 3_C __ ____ ___ __ +5? ___ ___ /E+1_ 3___ ________ ___ ____ ___ _____
___ _ _____ _ _ _ 3__ _________ ' ___"_ ____ _ ____ __ _ _______ ____ _
_________ ___ G_ _ __ ___ ( ________ ____ _ ___ ____ _ _______ __ O_'
______ /E*1_
__)____ _8__ _"_
___ ____ H___I __ ____ __ _ __ ______ _____ _ _ ____'_______'_______'_ _'
__ _ _3G2__ _ _______ ___ _ _ ___ __ 3__C%_+ __ ___________ __ _ _ ____ __'
____ _ ___ _ __ ___ ___ ___ :_C%_ ___ ___ ____ ____ "___ __ ____ ___ __
_______ ________
__)____ >_ _ - ,_ 6_______ $_?__& _")
(_ _,____ _ ___ _ _ __ _ _ ____ ________ ___" __ ________ __ ______
K_3*_6%+C _ _ _ ___ _ _ _ ____ ________ ___ ______ :_C% ___ _ ___ ____'
____ _ _ ____ _ _ ______&___ _ _ ___ _ ___ _ /E61_
__)__
__2____ *2_____ @____ _ _ ______ ____ __, >_,__ _ _ ____ ___.
( ____ __ ____ _ _ _ _____ ____ ___ _____ __ ____ __ __ _______ ______ _
___ _ ____ ____ _ _ _ _ _____ _ _ __ __ _"_____ ____ _ __ _ _____'
____ ____ _ __ __ ________ ____ __ ______ __ ________ ___ ___ _ ___
_______ _ _ _ ____ __ _____ _______ % ______ _ __ ____ __ ___ _ _ ______
_________ _ ___ ______ _ _ ____ __ ___ _____ ______ ____ __ ___ _ _ ___ _
H ___I__ K _ _"_____ ____ _________ __ _ _____ ___ _ ___ __ _________
__ _ ____ _ ___Q_ _ ____ _____ 3 __________ ____ ____ _ _ __ _ _ ___ ___
______ H______I ___ _ _____ ___ __ _____ _ ____ ____ _____ _ ___ _________
______ _ ___ ____ __ ______ _____ __ /______ ________ __ _______ __ 2__ _@_1_
__ _ _
_
5
_+
_
_ _
5
__
_ _
_
5
___
_ _
5
__
_@_
__ _
__
_
_
5
__
_____ __ L _______ ______ ____ _H______ _______I_ ___ __ L ______ _ ___ _'___'
__ __
____
_ ________ ____ __________
C____ _______ ____ __ ___ _________ _ _ ____ _______ __ _______ _ _ _____
____ ___ __ _ __ ___ ______ _ ___ _ ____ ______ ____ ____ *_*__
6___ ___ .____ ____ ______ _ _________ ____ ___ ______ _
_______"_ __ &.3'+ __ ____ __ _____ __ _____
6.__ _
___
?___!___
____ _
*2_____ ______ A___!_ *2_____ _% *___._____ __! ,
8_____
_ ____
_ __ _ ______@
_
_____
_ _ _____
_
______@
_
_ _ ___ __@
_
___ _
_
:_____
_______
______
5 __ _ _____
___
_ _ ___ _
___
2__'__ __
___________ _
C__ ___
______
_______
@ __ _ ____+
_
_____ _ _____
___
_ _ ___ +
_
___ _
_____ _________
)__________ _
__________
_______________
&'_______ + __ _ ____*
_
____+
_ _ ____+
_
_____
_ _ ___ *
_
___ +
_
)__________ _
__ ___ _______'
________
_'_______ ( __ _ ______@
_
_____
_
_ _____
_
______@
_
_ _ ___ __@
_
___ _
_
G______ _
.__ ____
_______
_ ________
__ _ ______@
_
_____ _ _
@
_
_ _ ___ __@
_
___ _ _ _
@
_
.__ ____
_ _ _________ ______ ___ _________ _____ _ ________ ______ __________
%_____' ____ ________ ____ _____ _____ ____ ___' ____ ________ _B_N@R B___
( _____ ____ __________ _ ___________ __ ___ _ _____ _____'____"_ __ ____
__ &__ _ _ _ _ ________ ______ ___ ________ ____ _________ _ ___________
/2__ _+_1;
_ _
__
__ _ @ _+_
____
__ ! "_ __ _____ __#_____ $___ ____ __%
__)__
___! ,_ _ ________ _ ___ ____ $B_ ______ ?___!_C&
B___ __ _______ _ _ _ ___ _ ________ ___ _ ____ ______ _ _ __ _ ___
____ ________ _ _ _ ___ ___ __ _ ___ __&_ _ ___ ____ ___ ________ _ _
_____ _ ____ _______ ___ ______ __ _____ 2_______ __ _______ __ 2__ _*__ __ _
_____ _ _ _ ____ _____ __ ___ ____' ________ __ _;
_________ _
_ _ ________
_ _ ________ _ _ _____
__
__5
_________ _ _ ___
_*_
__ _________ ______ _ ___ __ _ _________ ________ __ ___ _"____ _____
___ ______ __ _______ _______ _ &__ ________ __ _ ____ __ _______ ____ __
__ _"____ _______ _ _ ____ ____ _ ___ _ ____ ___ ____ ____ __ ____ _ _
_ ____ ____ ___________ _ ___ _____ __ ____ *_0_
6___ ___ ______ _ __ ____ _ __ _____ _________ _____
___! , ___ ___D
______2_
-_______ __ ____. _____,
C__ ___ _ C__ __ ________
_____ _________
)__'____ P'___ _________
)__'____ _____ _ _________
_ ______ ________ __ ___ ______ _ _ __ _______
____ _ ____
-____________ _ )__________ _ ______ ___ _______ _ _______
3 ________ _ ________ _ ______ ___ ______
G______ _ _ G______ _ ______
)_&_'_"___ _ __ ___ ______
___'________ _ __ ___ _______
_ $______ _ ____ __ _ _________ __
.__ ____ _ .__ ____ ______ __ &__ ______
__)____ <_ ___
___ __ __ ________ _ _ _ _ ___ _ _______ _ _ ____ ____ _ ___ ___'
_____ _ _ /2__ _0_1;
_
_ _
@
__ _ _+_ _ _*_+ _ ___ _0_
____
_ ________ ____ __________
_____ (+D (* L __ __ ___ _____ _____ ________ _ __ __ ________ ___
B_L _ ____ ____ _ _ ___ _______ _________
___ __ __ ________ __ ________ __ _ ___ __ _ _ ____ _____ _ ____ _ '
____'______ __ ____ ________ ____ _____ _____ ___________ ____ __ ____
_______ B __ ____ __ ____ __ __________ ____ _____ ___ _ _ _ ____'______
__ ____ ______ _____ _______ ____ _____ ____ ____ __ ____ __ _____ ____ _ _
____ __ __ __ _ ___ ___ ___ _________ __ _____ __ _ ____ __
______ _ __ __ ___________ __ _____ _ ______
___ _ ____ ____ __ _______ __ _ ___ ______ __ __ _________ ____ __
____ __ _ ______ ____ ______ __ ____ __ ________ _ 5_ _______ __ ___ _"'
____ ___ _ _ _____ _______ __ ______ ________ ___ ________ _ _____ _
)____ *_@*_ _ _________ __ __ __ __ K___ *_=_
1/Mn
c [g/cm3]
Π /c [mol/g]
A2
c1 c2 c3 c4 c5
1___ ___ 4_____ __ _ __________ _ _ ____ _ _________
0 5 ______ ____ ______ __+ __+ __+ _ __ 5 ______ __ ____
Δp
1___ __" ___ _______ _ __ ______ ____ _ ________ __
________ ______ ___ __ 5 ________ _______ &5 ____ _
________'_
____
__ ! "_ __ _____ __#_____ $___ ____ __%
C__ __ ________ ___ __ ________ ______ __ _____ _ ____'________ ___'
______ ____ _________ __ __!____ _______ ________ ___ _ ___ _ ___ _ '
_____ ___________ (_ ___ _ ____ _ ____ _______ ___ ___ ___ _________ ___
________ __ ___ _ ____ ______ _________ ___ _________ __ ________ _______
___ __ _______ _____ ___ _ ___ __ __ _________ ___ _________ _ _ __
_________ _ _ _________ __ __ ________ __ __ __ _________ __ K___ *_E_
_ _____ ____ ___ ____ _______ __ __ ___ _____ __________ __ _ ________
_ ____ ' __ __ _______
(___________ ___ __ __ ________ ___ __ __________ ________ __ ___ _____
_ ___ _ _________ ___ ________ _ _ ___ _ _________ __ __ _ _ ___ _ _____ __ _ _'
__ __ _ ___ __ __ _________ _ /2__ _<_1;
_ _ ___________ _ _________ _<_
: _____ ___ _________ __ ___ _ ________ __ __________ __ __ _______ ____ __
___ __ ________ ________ _ ___ ___________ __!________ .___ ___ ______'
____ ___ _______ _ ________ _ ____ ____ _ __ _________ _ _ ________ _ _ _'
___ _______ ___ __ _ _ _______ _ _ ______ _ __ ______ ________ __ ___
__)____ -_________ ___! ,_
)________ ____ __ _________ ___ _______ __ ____ __ ________ ________ __ ___
____ ___ ___ _ _____ ___ _ ___ _ _______ _ ___ __ ______ ____ __ _ _
_____ P'_____ _ _________ _____ __ __ _ _ _____ ____ __ ___ _ __ ________
__ __ _____ ____ __ ____ ______ _____ %____ __ __ _ _ _____ _ _____ _ ___ '
___ _ _____ __ 3_' ___ K_' ________ ___"__D __________ __ __ __ _ _'
___ ________&__ ___ ____ ___ __ __ _____ _ ____ _ _ ____________ ___ ___'
______ ___________ ___ __________ ___ _____________
sample
polarizer detector
laser
light trap
Θ
1___ __' 3______ _ ________ __ ______ ___ ____ ___ &_______ __ __ __ _____'_
._____ ____ _________ __ ________ __ __ _________ _ _____ _ K___ *_>_ ___
_____'_ ___ _ ____ __ ____ _ ____ _______ _____ ___ _ _____ _____&__ ____ _
___)
_ ________ ____ __________
___ __ ____'_________ ______ ___ __ ______ __ _______ ___ _____ ______'
____ K _ ____ ____ __ ____ __ ___ ___ _____ ____'____ ______ _ ___________ _
___ _ _ ____________ _____ _____
___ _______ _ ___&__ _______ ____ __ ________ __ ___ ___ _ ____ __ _ '
___ __ ___ ________ ____ __ _______ __ _ __ _ ______ ____ ______ ___ _____
__ _ _ __& ___ _____ ___ _______ ____ _________ __ __ ____ __ _ _____ _ _ ___
_________ _____ __ (___________ _ ______ _ __"__ _____ __ ___ ________ ___
_____ ___ ____ __ ____ __ _________ ______
___ _______ _________ _ ____ ________ __ _ ______ _________ ______ _
_$_ L ________F ________ _______ _;
_ ___ ________ _ _ ___ _ ___ _ ___D
_ ___ _________ __ ____" _ _______ _ _______ _ ___ ___ _ _____
_____ ___ ____" _ _______ _ ________ ___F L ___ ___ _ A __ _____F_D
_ ___ _ ____ ____ _ ____ ___ _______ _B_D ___
_ ___ _________ ____ ____
___ ______ _________ _ _________ _________ ______ ___ ________ _ _ ____
_________ __ _____'________ ____________ K _ _______ _______ __ __&_ _ ___
_________ _ _____ _________ _________ _______ _ ___ _________ ____ _ _____
_ _ _ ____ _______ __ 8______ /2__ _6_1;
__ _ ___5____+ ___+_
+
@
__
_ @
___5
@ _ _ _+ _ ___+ _
_ + _ ____ _6_
_
@
*
0_
_ _+
_____ ) L ______ _ ______ _ ___ L _________ _ ____ __ ___ _ ___ _ _____ __ "'
_____ _ __ O_____
___ _ _____ __ 2__ _6_ _ _ __ _"____ ___ _ _ ____________ ________ __ ___'
_ __ _________ _____ _ _________ ____ &__ _$_ L 5_ ____ __ _ _ ______ _____'
__ _ ____________ __ ____ __ ___ ___ _ _ ___ _______ _______ _____ ____
______ ___ ________ _____
: __ $_ L 5 __ __ _ ___ __ _ ___ _ ____ ______ _ _ ___ _ _ ________ _____ __
(_ _ ______ ________ _ _ _ ___ __ ___ _________ _ _________ ____ __ _______
__________ __ _____'________ ____________ ___ _________ _ ________ _ _
___ ______ _________ _________ __ _____ __ 2__ _=__ ___ __ ______ _ ___ _____'
____ _ __ __ ________ /___ 2__ _0_1_
__
___5 _
@
__ _ _+_ _ _*_+ _ ___ _=_
___9
__ ! "_ __ _____ __#_____ $___ ____ __%
_ _
0_+_+
_______
__ 0
5
__
__ _ _+
_____ (+D (* L __ __ ___ _____ _____ ________ _ __ __ ________D
B_ L _ ____ ____ _ _ ___ _______ ________D 5 L _________ _ ____ __ ____D
:( L (_ ____ Q_ ______D ___ _L ____" _ _______ __
__ _______ 2___ _6_ ___ _=__ ___ ________ ____ ___ __ _"____ ____ _ &__ _'
_______ __ __ __ __ _ &__ ______ _________ _____ ____ __ _ ____ _ __ __
_____ _ _ '___ O___'_ _ ____ K___ *_@5__ ____ __ _ __ '_______ __ __ !___ _
_ ___ _____'_______ __ _____ _ $ L ________ ___ O___' ______ O ___ __ _ '
___ ___________ _ ____ _ __'___ ___ ____ __ _____ ________ _ ____'____ ____
___ _______ _ ____ _ _ _ ______
___ _________ ________ ____ __ ________ _________ __ _____ _ ___________
______ ______
K_ _ ___ O___ _____ _____ ______ __________ __ __ _______;
_ B ____ ____ _______ ________ B_
_ $_____ _ ______ _ _&'________ )&
_ )_ __ _____ ________ _ __ __ ________ (+
c1
c2
c3
c4 c5
c0
Θ= 15є
Θ= 45є
Θ= 45є
Θ= 90є
Θ= 120є
Θ= 135є
Θ= 0є
A2
S
0
v
K c
R
2 Z c sin
2
Θ
1/M ⋅ + w
1___ ___3 6!11____ __ __ ______ __ _ ___ ____ ____ __ __
_ _____ ___ _____'_ ____ __ _______ __ ___ _ ___ __ ___ _________ __ _
_____ __ ____ _____ _ ____ _____ _"____ ___ _ __ _ _ _ ______ _ ____ ____ _ ___'
__ _________ ____ _______ ___ ____
___ ____'_________ ____ _ __ ______ ____ ___ ___ __ _____ __ ___ ___ ____ _ _
_ ____ ____ ___ _______ ______ ___ _____ _ __ __ ___ _____ _ _ ___ _ ______
_ _"_____ __ _____ ______ _ ___ _ __________ ( ____'_________ _________
___ __ __ ____ __ _ ________ _____ _ _ __&_'_"___ _ __ ___ ______ ____ )_'
__ _ *_6_<_+_
____
_ ________ ____ __________
__)__
@___ ___. __________
__)____ - ___ _ @___ ___. __ _ ______ _ ____ ______ _!___ _____!
_ _____ ___ _______ ___ _ ___ __ _ _____ ____ _____ ______ ______ _
_ ____'______ __ _____ ____ _ _____ ___ ____ ____ ___ _ ___ __
_______ _"_ __ _____ ____ ___ _____ ___ ___ ___ ____ ____ ________ ____ ___ ____'
___ ____ _____ _ ___ _ ____ _ _____ 3 _________ ____ ___ ___ ____ _ _ _ '
___ _ __ __ _____ ________ __ _____ ______ ___ ____ ____________ ____
____ _ _____ _______ _____ _ ___________ ___ G_ _ __ ___
___ ____ _ _ _ ___ ___ ____ _______ __ ____ ____ _ _____ ____ ____ ____
_________ ______ ___ _ _ _ _ ______ ____ _ _____ __ _____ _____ ______ __
__ _ _ ___ ____ __ __ ______ _____ ___ _____ __ G_____ ____ _____ __ ____
___ _ ____ _______ _____ _____ _ ____ _ _ _____ _____ ______ ___ __ _ __ '
__ __ _ _ ____ _ ___ ___ _______ _ ___ ____ __ ____ ______ ___ _ _ ____ ___
_______ ___ _____ _ ______ ______ _"______ __ ___ _____ _ __ __ _'
______ ____ ___ _ ___ ___ _ ____ ____ _____ _ ___ ______ ___ _ __ ______
__ _______ __ ___ _ __ _ ______ _______ _____ ___ ____ __ _ _______ _ _______
_____ __ (_ ____ _____ _____ _ __ ___ _ ___ ________ ___ _____ _ _ ___ ______
___ _ ____ _______ ___ _______ _____ _ _ _ ______
____ _ ____ _____ __ _"_ ___ _ _____ ______ __ _ ___ _ ___ _____ _ ___ _____
_ _____ _ __ _____ _ ___ _____ __ __ __ __ K___ *_@@ _ _ ___ ___ _ _____
:___ ____ ______
Moving boundary
Stationary boundary
Laminar flow