
- •1. Теория и методика обучения математики. Психологические и педагогические основы преподавания математики.
- •2. Целостный процесс обучения математики и его существенные характеристики.
- •3. Методическая деятельность учителя математики.
- •4. Математика как наука и как предмет. Актуальные проблемы теории и методики обучения математики.
- •5. Цели обучения математике. Проблемы школ и классов с математической специализацией.
- •6. Методы и формы обучения.
- •7. Методы обучения математике, их классификация.
- •8. Методы научного познания в школьном курсе математики.
- •9. Анализ и синтез как методы научного познания, их применение при обучении математике. Индукция и дедукция в преподавании математики.
- •10. Урок - основная форма обучения. Основные требования к современному уроку математики. Типы уроков по математике и их структура.
- •11. Методы проблемного обучения математике.
- •12. Аксиоматический метод и метод математического моделирования в обучении учащихся математике.
- •13. Планирование работы учителя. Этапы подготовки учителя математики к уроку.
- •14. Математические понятия. Методика их формирования.
- •15. Виды теорем и связи между ними. Необходимые и достаточные условия.
- •16. Методика работы над аксиомой, теоремой. Методы доказательства. Приведите примеры.
- •17. Задачи как применение теории и как средство развития математического мышления. Классификация задач. Методика обучения учащихся умению решать задачи.
- •18. Внеклассная работа по математике, ее цели и содержание.
- •19.Формы и методы оценки и контроля знаний по математике. Тестовые формы контроля.
- •20. Требования, предъявляемые к оценке знаний и умений учащихся по математике.
- •21. Пути систематизации и обобщения школьного курса математики.
- •22. Эвристика в обучении математике
- •23. Проблема развития познавательного интереса при обучении математике
- •24. Логическое мышление учащихся пери обучении математике
- •25. Развитие понятия числа в школьном курсе математики.
- •26. Учение о функциях в школьном курсе математики.
- •27. Изучение трансцендентных функций.
- •28. Линия уравнений и неравенств в школьном курсе математики.
- •29. Методика изучения тождественных преобразований в средней школе.
- •30. Методика изучения производной, интеграла и их применений.
- •31. Векторы в средней школе.
- •32. Методика изучения геометрических построений.
- •33. Методика изучения геометрических преобразований
- •34. Методика изучения параллельности на плоскости и в пространстве.
- •35. Методика изучения перпендикулярности на плоскости и в пространстве.
- •36. Методика изучения площадей фигур и объемов тел.
17. Задачи как применение теории и как средство развития математического мышления. Классификация задач. Методика обучения учащихся умению решать задачи.
Учебные математические задачи являются очень эффективным и часто незаменимым средством усвоения учащимися понятий и методов школьного курса математики и вообще математических теорий. При обучении математике задачи имеют большое и многостороннее значение.
Образовательное значение. Решая упражнение, человек познает много нового: знакомится с новой ситуацией, описанной в задаче, с применением математической теории к ее решению, познает новый метод решения или новые теоретические разделы математики, необходимые для решения, и т. д. Иными словами, при решении упражнений человек приобретает математические знания, повышает свое математическое образование. При овладении методом решения некоторого класса упражнений у человека формируется умение решать такие задачи, а при достаточной тренировке - и навык, что тоже повышает уровень математического образования.
Практическое значение. При решении математических упражнений ученик обучается умению применять математические знания к практическим нуждам, готовится к практической деятельности в будущем, к решению задач, выдвигаемых практикой, повседневной жизнью. Почти во всех конструкторских расчетах приходится решать математические задачи, исходя из запросов практики. Исследование и описание процессов и их свойств невозможно без привлечения математического аппарата, т. е. без решения математических упражнений. Математические задачи решаются в физике, химии, биологии, сопротивлении материалов, электро- и радиотехнике, особенно в их теоретических основах, и др.
Это означает, что при обучении математике учащимся следует предлагать задачи, связанные со смежными дисциплинами (физикой, химией, географией и др.), а также задачи с техническим и практическим, жизненным содержанием.
Значение математических задач в развитии мышления. Решение математических задач приучает выделять посылки и заключения, данные и искомые, находить общее, сопоставлять и противопоставлять факты. При решении математических упражнений воспитывается правильное мышление, и прежде всего учащиеся приучаются к полноценной аргументации. Решение задачи должно быть полностью аргументированным, т. е. необоснованные аналогии, соблюдаются полнота и выдержанность классификации. При решении математических задач у учащихся формируется особый стиль мышления: соблюдение формально-логической схемы рассуждений, четкая расчлененность хода мышления, точность символики.
При обучении решению задач необходимо специально анализировать с учащимися связь и отношения элементов задачи. Так облегчится выбор приемов переработки условия упражнения.
Воспитательное значение. Прежде всего задача воспитывает своей фабулой, текстовым содержанием. Поэтому фабула многих математических упражнений существенно изменяется в различные периоды развития общества. Воспитывает не только фабула упражнения, воспитывает весь процесс обучения решению математических задач. Правильно поставленное обучение решению математических упражнений воспитывает у учеников честность и правдивость, настойчивость в преодолении трудностей, уважение к труду своих товарищей.
Обучающая роль. Обучающую роль математические упражнения выполняют при формировании у учащихся системы знаний, умений и навыков по математике и ее конкретным дисциплинам. Следует выделить несколько видов задач по их обучающей роли.
1) задачи для усвоения математических понятий. Чтобы овладеть понятием необходимо разобраться в смысле каждого слова в определении, четко знать свойства изучаемого понятия. Такое знание достигается прежде всего при решении задач и выполнении упражнений.
2) задачи для овладения математической символикой. Одной из целей обучения математике является овладение математическим языком и, следовательно, математической символикой. Простейшая символика вводится еще в начальной школе и в IV-V классах (знаки действий, равенства и неравенства, скобки, знаки угла и его величины, параллельности и т. д.). Правильному употреблению изучаемых символов надо обучать, раскрывая при решении задач их роль и назначение.
3) задачи для обучения доказательствам. Обучение доказательствам - одна из важнейших целей обучения математике.
4) задачи для формирования математических умений и навыков.
5) Обучающую роль играют и упражнения, предваряющие изучение новых математических фактов.