- •2. Розділ 2 границі функції в точці та
- •5. Розділ 5. Похідна функції та її
- •Приклади для розв’язування.................................................44
- •6..4 Приклади для розв’язування........................................................54
- •Приклади для розв’язування.................................................64
- •Приклади для розв’язування......................................................73
- •Розділ 1. Функції, їх властивості та графіки План
- •Приклади для розв’язування.
- •Елементарні функції та їх графіки
- •4. Найпростіші перетворення графіків функцій.
- •5. Приклади для розв’язування.
- •3. Побудувати графік функції та указати область значень:
- •Розділ 2. Границі функції в точці та на нескінченності та їх використання для дослідження функцій План
- •Границя функції в точці.
- •Дослідження функції на неперервність
- •1. Границя функції в точці
- •2. Теореми про границі.
- •3. Правила обчислення границь.
- •4. Границя функції на нескінченності.
- •5.Дослідження функції на неперервність.
- •5. Приклади для розв’язування.
- •Розділ 3. Тригонометрія План
- •6. Основні формули тригонометрії.
- •7. . Найпростіші тригонометричні рівняння
- •8. Приклади для розв’язування.
- •1. Визначення тригонометричних функцій
- •Слід пам’ятати:
- •7. «Найпростіші тригонометричні рівняння»
- •8. Приклади для розв’язування.
- •Розділ 4. Степені та логарифми План
- •Приклади для розв’язування.
- •1. Степені. Корінь n-го степеня.
- •4. Поняття логарифмів .
- •6. Приклади для розв’язування
- •Розділ 5. Похідна та її використання План
- •Приклади для розв’язування
- •1. Поняття похідної функції.
- •2. Фізичний зміст похідної:
- •3. Геометричний зміст похідної.
- •4. Рівняння дотичної і нормалі до плоскої кривої.
- •Приклади для розв’язування
- •15. Знайти рівняння дотичної до графіка функції , яка паралельна прямій .
- •21. ***Задачі на знаходження найбільших та найменших значень величин.
- •Розділ 6. Інтеграл та його використання План
- •3. Таблиця невизначених інтегралів.
- •4. Визначений інтеграл.
- •1. Первісна та невизначений інтеграл.
- •2. Основні властивості невизначеного інтеграла.
- •3. Таблиця невизначених інтегралів.
- •Визначений інтеграл
- •6.Формула Ньютона – лейбніца.
- •7. Використання інтегралів для обчислення площі плоских фігур
- •Приклади для розв’язування.
- •6. Обчислити визначений інтеграл.
- •Розділ 7. Вектори та координати План
- •Вектори та дії з ними.
- •Лінійні операції над векторами.
- •Рівняння прямої на площині».
- •Розв’язання систем лінійних рівнянь за формулами Крамера
- •5. Приклади для розв’язування.
- •1. Вектори та дії з ними.
- •2. Лінійні операції над векторами.
- •3. Рівняння прямої на площині».
- •4. Розв’язання систем лінійних рівнянь за формулами Крамера
- •5. Приклади для розв’язування.
- •Розділ 8. . Стереометрія План
- •Приклади для розв’язування
- •Основні поняття стереометрії
- •2. Аксіоми стереометрії
- •3. Теореми стереометрії
- •4. Площі геометричних фігур.
- •5. Площі поверхонь та об’єми геометричних тіл.
- •6. Паралельні проекції деяких плоских фігур.
- •7.Приклади для розв’язування
-
Приклади для розв’язування......................................................73
Рівні засвоєння навчального матеріалу:
-
перший рівень – початковий – відповідь студента при відтворенні навчального матеріалу – елементарна, фрагментарна, зумовлюється початковими уявленнями про предмет вивчення;
-
другий рівень – середній – студент відтворює основний навчальний матеріал, здатний розв’язувати завдання за зразком, володіє елементарними вміннями навчальної діяльності (*);
-
третій рівень – достатній – студент знає істотні ознаки понять, явищ, закономірностей зв’язків між ними, а також самостійно застосовує знання в стандартних ситуаціях, володіє розумовими операціями (аналізом, абстрагуванням, узагальненням тощо), уміє робити висновки, виправляти допущені помилки; відповідь повна, правильна, логічна, обгрунтована, хоча їй бракує власних суджень (**);
-
четвертий рівень – високий – знання студента є глибокими, міцними, узагальненими, системними; студент уміє застосовувати знання творчо, його навчальна діяльність має дослідницький характер, позначена вмінням самостійно оцінювати різноманітні життєві ситуації, явища, факти, виявляє і відстоює особисту позицію (***).
Розділ 1. Функції, їх властивості та графіки План
-
Визначення функції та способи задання.
-
Властивості функції.
-
Графіки елементарних функцій та їх властивості.
-
Перетворення графіків елементарних функцій
-
Приклади для розв’язування.
1. Функцією називається відповідність між двома множинами, при якій кожному елементу однієї множини ( області визначення ) відповідає єдиний елемент іншої множини ( області значень ).
Область визначення функції має обмеження у таких випадках:
-
Функція зростає, якщо більшому значенню аргумента відповідає більше значення функції і спадає в іншому випадку:
f(x) ↑↔ x2>x1→ f(x2)>f(x1);
f(x) ↓↔ x2>x1→ f(x2)<f(x1);
Функція парна, якщо при зміні значення аргументу на протилежне значення функції не змінюється: f (-x) =f(x).
Функція непарна, якщо при зміні значення аргументу на протилежне значення функції змінюється на протилежне: f (-x) = - f(x).
Функція, що не являється непарною та парною називається функцією загального вигляду.
-
Елементарні функції та їх графіки
-
№ п/п
Назва функції.
Формула.
Графік.
1.
Лінійна функція

Пряма лінія.


2.
Пряма пропорційність.

Пряма лінія, що проходить через початок координат.


3.
Обернена пропорційність.

Гіпербола.


4.

П
арабола.
5.

К
убічна
парабола.
6.

«Лежача» вітка параболи

7.

К
ут,
утворений бісектрисами 1 та 2 чверті.
