Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
morozova_t_f_uchebnoe_posobie_elektrotehnika_i_elektronika.doc
Скачиваний:
1166
Добавлен:
13.02.2018
Размер:
4.11 Mб
Скачать

2.6 Активная, реактивная и полная мощности

Активная мощность – это энергия, которая выделяется в единицу времени в виде теплоты на участке цепи с сопротивлением R

. [Вт].

(2.49)

Реактивная мощность – это энергия, которой обмениваются генератор и приемник.

Под реактивной мощностью Q понимают:

.[Вар]

(2.50)

Если и наоборот –

Полная мощность

[ВА].

(2.51)

Графически связь между мощностями представляют в виде треугольника мощности, у которого два катета Р и Q и гипотенуза S.

Рисунок 2.12 – Треугольник мощностей

Косинус угла сдвига фаз называетсякоэффициентом мощности. Он показывает, какую долю полной мощности составляет активная мощность, а какая доля электроэнергии преобразуется в другие виды энергии. Когда , то это означает, что активная мощность равна полной или сопротивление потребителя только активное.

Коэффициент мощностиважный эксплуатационный параметр электроприемников. Так как

,

(2.52)

то чем выше , тем при меньшем значении тока в цепи происходит преобразование электроэнергии в другие виды энергии, что приводит к уменьшению потерь электроэнергии, ее экономии и снижению стоимости устройств электропередачи.

Повышение коэффициента мощности

Во многих электротехнических устройствах преобладает индуктивная составляющая реактивного тока, т.е. большой положительный угол сдвига фаз φ между напряжением и током, что ухудшает коэффициент мощности. Низкое значение приводит к неполному использованию технических и электротехнологических систем, которые загружаются реактивной (индуктивной) составляющая тока, что приводит к увеличению потерь энергии.

Для увеличения параллельно электротехническому устройству включают батарею конденсаторов. Емкостный (реактивный) ток компенсирует индуктивный ток.

Баланс мощности в цепи синусоидального тока

Баланс мощности заключается в том, что:

1. Алгебраическая сумма активных мощностей всех источников энергии равная арифметической сумме мощностей всех резистивных элементов

(2.53)

2. Алгебраическая сумма реактивных мощностей источников энергии равна разности между арифметическими суммами реактивных мощностей индуктивных элементов и емкостных элементов

(2.54)

Баланс мощностей можно выразить и в комплексной форме: алгебраическая сумма комплексных мощностей источников энергии равна алгебраической сумме комплексных мощностей потребителей энергии

(2.55)

Знаки алгебраических слагаемых источников энергии выбираются по правилу для активных мощностей: знак «+» если направления действия ЭДС совпадает с направлением действия тока и «–», если не совпадают.

2.7 Резонанс в цепях синусоидального тока

В качестве критерия режима «резонанс» в электрических цепях, содержащих катушки индуктивности и конденсаторы, принимается совпадение по фазе тока и напряжения на входных зажимах, т. е. фазовый резонанс.

Если конденсатор зарядить до какого-то напряжения, то его разряд на катушку и повторный заряд имеет колебательный характер. При свободных колебаниях в отсутствии потерь напряжение на обкладках конденсатора меняется во времени по косинусоидальному, а ток в катушке – по синусоидальному законам. В реальном колебательном контуре кроме катушки индуктивности и емкостного элемента должен быть и резистивный элемент.

При подключении колебательного контура к источнику энергии могут возникать резонансные явления. Различают два основных вида резонанса: резонанс напряжений при последовательном соединении контура с источником энергии и резонанс токов – при параллельном соединении.

Резонанс напряжений

Рисунок 2.13 – Последовательный колебательный контур

По закону Ома комплекс тока в контуре будет

(2.56)

где Z – комплексное сопротивление контура, определяемой формулой (2.38).

Полное сопротивление контура и угол сдвига фаз из формул (2.41) и (2.42). Тогда действующее значение тока равно:

(2.57)

Резонанс возникает при равенстве индуктивных и емкостных сопротивлений:

.

(2.58)

При этом начальные фазы тока и напряжения будут равны ,. Полное сопротивление минимально и равно, а действующее значение тока придостигнет максимального значения:

(2.59)

Резонанс напряжений – это режим неразветвленной цепи, при котором ток и напряжение совпадают по фазе, а действующие значения напряжений на индуктивном и емкостном элементах равны, но противоположны по фазе.

Рисунок 2.14 – Векторные диаграммы режимов резонанса напряжений (а)

и резонанса токов (б)

Из условия (2.58) следует, что резонанса можно достичь, изменяя частоту напряжения питания или параметры цепи: индуктивность или емкость. Резонансная угловая частота – частота, при которой наступает резонанс:

.

(2.60)

Отношение напряжения на индуктивном элементе или емкостном элементек напряжению питания при резонансеназывают добротностью контура или коэффициентом резонанса:

(2.61)

Частотные характеристики и резонансные кривые последовательного контура. Изменение частоты ω приводит к изменению параметров контура,

т. е. изменяется его реактивное сопротивление, а также угол . Зависимость от частоты параметров цепи (XL и XC) называется частотными характеристиками цепи, а зависимость действующих (или амплитудных) значений тока и напряжения от частоты – резонансными кривыми.

Рисунок 2.15 – Частотные характеристики последовательного контура

Изменение реактивного сопротивления приводит к изменению режима цепи. На рисунке 2.16 показан примерный вид резонансных кривых: тока , напряжений на емкостноми индуктивномэлементах, а также угла φ для цепи с добротностьюQ ≈1,25.

Рисунок 2.16 – Резонансные кривые последовательного контура

Резонансные кривые рисунка 2.17 показывают, что чем выше добротность Q, тем острее резонансная кривая и лучше избирательные свойства цепи, для оценки которых пользуются понятием полосы пропускания, что является разницей верхней и нижней частот . Пересечениес резонансными кривыми и определяет граничные частоты.

Рисунок 2.17 –Резонансные кривые для цепей с различной добротностью

Резонанс токов может возникнуть в цепи, схема которой содержит параллельно соединенные индуктивный, емкостной и резистивный элементы. Резонанс наступает, когда у входной проводимости

(2.62)

равны противоположные по фазе реактивные составляющие токов . Поэтому такой резонанс и называется резонансом токов.

Рисунок 2.18 – Параллельный колебательный контур

При резонансе полная проводимость контура минимальна , и общий ток также минимален

(2.64)

Резонанс токов – это режим участка цепи с параллельными ветвями, при котором сдвиг фаз между напряжением на его выводах и общим током равен нулю. На рисунке 2.19 б приведены резонансные кривые параллельного контура. Точка пересечения кривых исоответствует резонансу токов, при котором.

Рисунок 2.19 – Частотные характеристики (а) и резонансные

кривые (б) параллельного контура

Резонанс напряжений – явление нежелательное, т. к. приводит к перенапряжениям в цепях, которые могут в несколько раз превышать рабочее напряжение установки. Резонанс токов – явление безопасное для установок. Явление резонанса применяется в радиотехнике при настройке контуров на резонансную частоту.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]