Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экзамен / Экзаменационный Билеты Лечебного факультета.docx
Скачиваний:
586
Добавлен:
19.06.2017
Размер:
2.81 Mб
Скачать

2. Основные исторические этапы учения о наследственности и изменчивости микробов. Вклад отечественных и зарубежных ученых.

Генетика— наука о наследственности и изменчивости организмов.

В микробиологии начало научного изучения вопроса изменчивости бактерий было положено Ценковским, Мечниковым и Гамалея. Мечников утверждал, что "...именно в области микробиологии была доказана возможность изменения характера бактерий путём изменения внешних условий, причём можно добиться стойких изменений, передаваемых по наследству".

Отечественные микробиологи (И. И. Мечников, С. Н. Виноградский, Н. Ф. Гамалея, В. Л. Омелянский, Д. И. Ивановский, В. И. Кедровский, Л. А. Тарасевич и др.) признавали возможность изменения природы бактерий под влиянием условий внешней среды с получением у микробов стойких изменений, передающихся затем по наследству. По этому поводу Т. Д. Лысенко отмечает: "Микроорганизмы, имеющие непродолжительный период жизни, наиболее легко наследственно приспособляются к изменяющимся условиям внешней среды".

Большой вклад в вопросы изменчивости микробов внесли советские исследователи (Красильников, Имшенецкий, Сукнев, Покровская, Калина, Жуков-Вережников и др.).

В микробиологии основоположником учения об изменчивости является Луи Пастер. Он искусственным путем получил необратимое ослабление вирулентности возбудителей сибирской язвы (1881) и бешенства (1885), а также получил способ приготовления живых вакцин для борьбы с этими заболеваниями. Это открытие Пастера имело поворотное значение для борьбы с инфекционными заболеваниями человека и животных. Применение живых вакцин привело к ликвидации многих эпидемий, сведя их до единичных заболеваний. Противосибиреязвенная вакцина получена Пастером путем длительного (12-24 дня) выращивания при повышенной температуре (42°) вирулентной культуры сибиреязвенной палочки.

3. В порядке планового контроля противоэпидемического режима в отделении реанимации установлено: в палатах КОЕ – 1000, S. aureus – 4, БГКП не обнаружены. Оцените результаты исследования? Наметьте план выяснения причин сложившейся ситуации?

Воздух грязный. Допустим до 500мт на 1м3.

Проверить персонал. Санитарно-микробиологические смывы, обработка.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 56

1.Роль вирусов в этиологии опухолей (днк- и рнк-вирусы).

Гипотезу о роли вирусов в этиологии опухолей высказывал еще И. И. Мечников. В 1911 г. Роус установил, что куриную саркому можно перевить- от больной курицы здоровой при помощи бесклеточного фильтрата, а не только материала, содержащего клетки. Это положило начало изучению так называемых вирусных опухолей и опухолеродных вирусов. В 30-х годах XX века Шоуп описал вирусную папиллому кроликов. Бесклеточный фильтрат этих папиллом, нанесенный скарификационным методом на кожу лабораторных кроликов, вызывал у них образование таких же папиллом. Папилломы через несколько месяцев превращались в рак и вызывали гибель подопытных животных. Опухолеродные, как и другие, вирусы делятся на РНК-содержащие и ДНК-содержащие в зависимости от нуклеиновой кислоты, входящей в их состав.

РНК-содержащие: семейство Retroviridae.

ДНК-содержащие: семейства Papillomaviridae, Polyomaviridae, Adenoviridae 12, 18, 31, Hepadnaviridae, Herpesviridae, Poxviridae

Семейство Retroviridae включает 7 родов.

Онковирусы являются сложноорганизованными вирусами. Вирионы построены из сердцевины, окруженной липопротеиновой оболочкой с шипами. Размеры и формы шипов, а также локализация сердцевины служат основой для подраз¬деления вирусов на 4 морфологических типа (А, В, С, D), а также вирус бычьего лейкоза.

Капсид онковирусов построен по кубичес¬кому типу симметрии. В него заключены нуклеопротеин и фермент ревертаза. Ревертаза обладает способностью транскрибировать ДНК. Геном – 2 идентичные цепи РНК.

Культивирование вирусов: не культивируются на куриных эмбрионах, культивируются в организме чувствительных животных, в культурах клеток.

Репродукция вирусов: проникают в клетку путем эндоцитоза. 3 этапа: синтез ДНК, на матрице РНК; ферментативное расщепление матричной РНК; синтез комплементарной нити ДНК на матрице первой нити ДНК.

К семейству Retroviridae относится примерно 150 видов вирусов, вызывающих развитие опухолей у животных, и только 4 вида вызывают опухоли у человека: HTLV-1, HTLV-2, ВИЧ-1,ВИЧ-2.

Вирусы Т-клеточного лейкоза человека

К семейству Retroviridae роду Deltaretrovirus относятся вирусы, поражающие CD4 Т-лимфоциты, для которых доказана этиологическая роль в развитии опухолевого процесса у людей: HTLV-1 и HTLV-2

Вирус HTLV-1 является возбудителем Т-клеточного лимфолейкоза взрослых. Он является экзогенным онковирусом, который, в отличие от других онковирусов, имеет два дополнительных структурных гена: tax и rех.

Продукт tax-гена действует на терминальные повторы LTR, стимулируя синтез вирусной иРНК, а также образование ИЛ-2 рецепторов на поверхности зараженной клетки. Продукт rex-гена определяет очередность трансляции вирусных иРНК.

HTLV-2 был изолирован от больного волосисто-клеточным лейкозом.

Оба вируса передаются половым, трансфузионным и трансплацентарным путями.

Семейство Papillomaviridae – вирус папилломы человека, собак. Вызывают инфекцию в клетках плоского эпителия. Доброкачественные папилломы в области половых органов, на коже, на слизистых дыхательных путей.

Семейство Polyomaviridae – вакуолизирующий вирус обезьян SV-40.Вирус полиомы человека.

Семейство Adenoviridae – аденовирусы, особенно серотипы 12,18,31 – индуцируют саркомы и трансформируют культуры клеток.

Семейство Poxviridae – вирусы фибромы-миксомы кролика, вирус Ябы, вызывающий развитие опухолей, вирус контагиозного моллюска.

Семейство Herpesviridae – лимфомы, карциномы. Онкогенез у человека связан с вирусом простого герпеса 2 типа (ВПГ-2) и вирусом Эпштейна-Барр (ВЭБ).

2.Генетический аппарат микроорганизмов разной сложности организации.

Генетический материал бактериальных клеток представлен двойной спиралью ДНК, состоящей из 2-х комплементарных полинуклеотидных цепочек, в каждой из которых пуриновые и пиримидиновые основания распределены вдоль остова, построенного из меняющихся фосфатных групп и дезоксирибозы; 2 цепочки удерживаются друг с другом посредством водородных связей между соответствующими основаниями. У вирусов генетический материал представлен лишь одним типом нуклеиновой кислоты – либо ДНК, либо РНК. Подробно химическая структура нуклеиновых кислот, являющихся основой наследственности, изложена в курсе биохимии. Клетки бактерий могут содержать несколько генетических элементов, способных к репликации. По предложению Ф.Жакоба, С.Бреннера и Ф.Кузина структура бактериальной клетки, способная к самовоспроизведению, получила название «репликон». Репликоны бактерий представлены бактериальной хромосомой (нуклеоидом), плазмидами иэписомами. Плазмиды представляют собой репликон, находящийся в автономном состоянии в цитоплазме бактериальной клетки, эписомы могут находиться как в свободном состоянии, так и быть интегрированными в нуклеоид, составляя с ним общий репликон.

Нуклеоид представляет собой замкнутую кольцевидную хромосому бактерий, свободно располагающуюся в цитоплазме, и содержит несколько тысяч отдельных генов. В зависимости от стадии жизненного цикла в бактериальной клетке обычно присутствуют от одного до четырех копий нуклеоида. Длина бактериальной хромосомы в развернутом состоянии составляет приблизительно 1 мм.

Существуют два основных способа репликации ДНК нуклеоида. По первому типу репликация кольцевидной молекулы ДНК начинается от начальной точкиori (origin – начало) в определенном месте ее кольца. Сначала идет раскручивание (деспирализация) двойной цепи ДНК, в результате чего образуетсярепликативная вилка. Одна из цепей, достраиваясь, связывает нуклеотиды от 5`- к 3`-концу, другая достраивается посегментно. Данный способ репликации ДНК проходит через промежуточную структуру, напоминающую греческую букву тэта. Тэта-тип репликации приводит к образованию двух дочерних кольцевых хромосом. В них сохраняется одна из цепей исходной молекулы ДНК, а вторая цепь синтезируется из нуклеотидов ДНК-полимеразами. Превращение кольцевой бактериальной хромосомы в линейную происходит при другом типе репликации нуклеоида – по так называемому «сигма-типу» или иначе – по механизму «катящегося кольца». Этот механизм осуществляется через промежуточную структуру, напоминающую греческую букву «сигма». Он реализуется во время конъюгации бактерий, а также у некоторых фагов. В этом случае первоначально образуется разрыв в одной из цепей ДНК кольцевой молекулы, и разорвавшаяся цепь ДНК начинает сдвигаться с комплементарной кольцевой цепи. При этом происходит одновременное достраивание до двухцепочечной ДНК как сдвигающейся линейной цепи, так и остающейся кольцевой.

Третий известный тип репликации ДНК характерен для линейных молекул ДНК. Он присущ всем эукариотическим организмам, а также некоторым вирусам. В этом случае в ДНК появляется вздутие – точка инициации. Далее вздутие распространяется в обоих направлениях с одновременным удвоением родительской ДНК. Единицей наследственности у всех живых организмов являются гены. Они в ДНК лежат дискретно и линейно (колинеарно). Гены способны создавать собственную копию, т.е. способны к саморепликации. Последовательность аминокислот в синтезируемом белке определяется последовательностью нуклеотидов в гене. Генотип микроорганизма – это полная совокупность генов данной особи. Однако реализуется генотип только через его взаимодействие с окружающей средой. Условия среды способствуют проявлению (экспрессии) генов или подавляют их функциональную активность. Тем самым создается фенотип микроорганизма – набор его свойств и признаков (морфологических, культуральных, биохимических, антигенных и т.д.) Гены, ответственные за синтез определенного соединения у бактерий, обозначают строчными буквами латинского алфавита со знаком «+». Например, gal+ – ген, ответственный за потребление сахара галактозы, bio+ – за синтез витамина Н (биотина) и т.д. Гены, контролирующие устойчивость к лекарственным средствам, химическим соединениям, обозначают буквой r (resistent – устойчивый). Например, резистентность к стрептомицину обозначается как strr, а чувствительность strs. Фенотип бактерий обозначают так же, как и генотип, но с прописной буквы. Согласно схеме, предложенной Жакобом и Моно, гены можно подразделить следующим образом:

1.Структурные гены – они обусловливают синтез определенных белков-ферментов, участвующих в биохимических реакциях.

2.Гены-регуляторы – определяют синтез белковых веществ (часто это репрессоры), имеющих высокое сродство к ДНК в области гена-оператора и изменяющих деятельность структурных генов. 3. Гены-промоторы (или промоторная область) – участок ДНК распознаваемый ДНК-зависимой РНК-полимеразой, необходимый для начала транскрипции 4. Гены-операторы – посредники, располагающиеся между структурными генами, промотором и генами-регуляторами. Если в среде появляется вещество-индуктор, которое связывает репрессор, то снимается блок со структурных генов и они начинают функционировать. Совместно ген-регулятор, промотор, onepaтop и структурные гены образуют оперон. Оперон является функциональной генетической единицей, ответственной за экспрессию одного или группы генов.

Существуют индуцибельные и репрессибельные опероны. Типичным примером индуцибельного оперона является Lac-оперон, его гены контролируют синтез ферментов, обеспечивающих утилизацию лактозы в микробной клетке. Если клетка не нуждается в лактозе, то активный белок-репрессор, кодируемый геном-регулятором, связан с областью оператора и блокирует транскрипцию, поддерживая оперон в неактивном состоянии. Индуктор (углевод) поступает в клетку, далее происходит его связывание с белком-репрессором и вытеснение репрессора с ДНК. Снятие репрессии приводит к активации структурных генов оперона и началу процесса транскрипции с последующей трансляцией. Образующиеся ферменты (в частности – галактозидаза) утилизируют поступающую лактозу. При снижении ее концентрации в клетке ферменты начинают расщеплять индуктор. Тем самым происходит освобождение репрессора, что приводит к торможению активности структурных генов.

Примером репрессибельного оперона является триптофановый оперон, обеспечивающий синтез аминокислоты триптофана. Обычно этот оперон функционирует постоянно, а его белок-репрессор находится в неактивном состоянии. При возникновении избытка триптофана в среде аминокислота связывается с репрессором и активирует его. Активный репрессор «выключает» работающий оперон.

3.В эпидемический период гриппа все больные с характерными клиническими симптомами были обследованы на 5-й и 20-й дни с помощью РСК для определения наличия специфических антител. На 5-й день РСК была положительна в разведении сыворотки 1/20, на 20-й день – 1/160. Определить диагностическую ценность полученных результатов. Какое значение в эпидемическом аспекте имеет поиск антител в сыворотках крови, взятых от больных?

По возрастанию титра судим о развитии заболевания. Используем парные сыворотки.

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 57

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.