
- •Модуль 1. Аксиоматический метод в математике. Множества
- •Задания к практическим занятиям по модулю №1
- •Практическое занятие №1. Аксиоматический метод. Теория множеств. Способы задания множеств. Алгебра множеств. Отношения между множествами
- •1. Цель работы
- •2. Теоретический материал для практического занятия №1
- •2.1. Правила аксиоматического построения теории
- •2.2. Теория множеств. Понятие множества
- •2.3. Способы задания множеств
- •2.4. Подмножества и равенство множеств
- •3. Примеры выполнения задания к практической работе №1. «Алгебра множеств. Подмножества и равенство множеств»
- •4. Вопросы для самоконтроля к практическому занятию №1
- •4.2. Вопросы для самоконтроля к практическому занятию №1 по теме: «Теория множеств. Алгебра множеств. Подмножества и равенство множеств»
- •Практическое занятие №2. Алгебра множеств
- •1. Цель работы
- •2. Теоретический материал для практического занятия №2. Алгебра множеств. Операции над множествами
- •2.1. Операции над множествами
- •2.2. Геометрическая интерпретация алгебры множеств
- •3. Примеры выполнения задания к практической работе №2. «Основные операции над множествами»
- •4. Вопросы для самоконтроля к практическим занятиям по теме «Алгебра множеств. Основные операции над множествами»
- •Практическое занятие №3. Отношения на множестве. Бинарные отношения
- •1. Цель работы
- •2. Теоретический материал для практического занятия №3
- •3. Примеры выполнения задания к практической работе №3
- •4. Вопросы для самоконтроля к практическим занятиям по теме множества. Отношения на множестве. Бинарные отношения
- •Модуль 2. Комбинаторика. Теория вероятностей
- •Задания к практическим занятиям по модулю №2
- •Практическое занятие №4. Случайные события и операции над ними. Задачи комбинаторики
- •1. Цель работы
- •2. Теоретический материал для практического занятия №4
- •2.1. Формулы комбинаторики
- •2.2. Теория вероятностей
- •2.3. Понятие вероятности события. Классическое определение вероятности. Вычисления вероятностей элементарных событий
- •3. Примеры выполнения задания к практической работе №4
- •4. Вопросы для самоконтроля по теме комбинаторика
- •Практическое занятие №5. Теоремы сложения и умножения вероятностей. Условная вероятность
- •1. Цель работы
- •2. Теоретический материал для практического занятия №5
- •2.1. Сложение вероятностей несовместных событий
- •2.2. Умножение вероятностей независимых событий
- •2.3. Вероятность появления хотя бы одного события
- •2.4. Умножение вероятностей зависимых событий. Условная вероятность
- •2.5. Сложение вероятностей совместных событий
- •3. Примеры выполнения задания к практической работе №5
- •4. Вопросы для самоконтроля по теме «Теоремы сложения и умножения вероятностей. Условная вероятность»
- •Практическое занятие №6. Формулы полной вероятности, Байеса
- •1. Цель работы
- •2. Теоретический материал для практического занятия №6
- •2.1. Формула полной вероятности
- •2.2. Формула Байеса
- •3. Примеры выполнения задания к практической работе №6
- •Практическое занятие №7. Дискретные случайные величины. Числовые характеристики
- •1. Цель работы
- •2. Теоретический материал для практического занятия №7
- •2.1. Дискретная случайная величина. Случайные величины, законы их распределения
- •2.2. Закон распределения распределения дискретной случайной величины
- •2.3. Характеристики дискретной случайной величины
- •3. Примеры выполнения задания к практической работе №7
- •Практическое занятие №8. Непрерывные случайные величины. Законы распределения
- •1. Цель работы
- •2. Теоретический материал для практического занятия №8
- •2.1. Функция распределения и плотность вероятности непрерывной случайной величины
- •2.2. Основные характеристики (параметры распределения) непрерывной случайной величины
- •2.3. Некоторые частные распределения
- •3. Примеры выполнения задания к практической работе №8
- •4. Вопросы для самоконтроля по теме «Непрерывная случайная величина. Законы распределения»
- •Практическое занятие №9. Непрерывные случайные величины. Нормальный закон распределения
- •1. Цель работы
- •2. Теоретический материал для практического занятия №9
- •2.1. Нормальное распределение
- •3. Примеры выполнения задания к практической работе №9
- •Литература к модулю 1
- •Литература к модулю 2
- •Приложение №1. Задания для выполнения самостоятельной работы №1
- •Задание 1
- •Задание 2. Геометрическая интерпретация операций над множествами
- •Приложение №2
- •Задания для выполнения самостоятельной работы №2
- •Комбинаторика
- •Вычисления вероятностей элементарных событий
- •Теория вероятностей. Теоремы сложения и умножения вероятностей. Условная вероятность
- •Задания для выполнения самостоятельной работы №3
- •Приложение №3
- •Приложение №4

a) Математического ожидания;b)Дисперсии; c)Функции распределения; d) Плотности вероятности.
M(x) = |
∞∫x f(x)dx |
вычисления: |
2. Формула |
−∞ |
a) Функции распределения; b) Дисперсии;
c) Плотности вероятности; d) Математического ожидания.
∞
3. Формула |
D(X) = ∫[x - M(X) ]2 f ( x)dx |
вычисления: |
−∞ |
a) Математического ожидания;b) Дисперсии;
c) Плотности вероятности; d) Функцияи распределения
Практическое занятие №9. Непрерывные случайные величины. Нормальный закон распределения
1. Цель работы
Цель работы – усвоить понятие непрерывной случайной величины с нормальным законом распределения, знать ее числовые характеристики. Уметь находить вероятность непрерывной случайной величины с нормальным законом распределения. Выработать навыки вычисления основных характеристик непрерывной случайной величины с нормальным законом распределения и ее числовые характеристики.
2. Теоретический материал для практического занятия №9
2.1. Нормальное распределение
Непрерывная случайная величина имеет нормальное распределение с параметрами: m, σ >0 ,если плотность распределения вероятностей имеет вид:
|
1 |
− |
( x−m)2 |
|
fξ (x) = |
2σ 2 |
(35) |
||
σ 2π e |
|
|
|
где: m – математическое ожидание, σ - среднеквадратическое отклонение.
Нормальное распределение называют еще гауссовским по имени немецкого математика Гаусса. Тот факт, что случайная величина имеет нормальное распределение с параметрами: m,
σ, обозначают так: ξ − N (m,σ ). Формула (35) может быть записана в виде:
|
|
1 |
e− |
( x−а)2 |
|
|
f (x) = |
|
2σ2 |
, |
−∞ < x < ∞. |
||
|
σ |
2π |
|
|
|
, |
где a – математическое ожидание; σ - среднее квадратическое отклонение Х.
а = M [X ], σ = + D[X ].
Если случайная величина распределена по закону N (0,1), то она называется стандартизированной нормальной величиной. Функция распределения для нее имеет вид:
|
|
1 |
x e− |
t 2 |
|
F |
(x) = |
2 |
dt |
||
0 |
|
|
∫ |
. |
|
|
|
2π −∞ |
(35a)
(36)
(37)
41