Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Цифровая обработка сигналов.pdf
X
- •Министерство образования и науки Российской Федерации
- •2.2. Энергия и мощность сигнала ………………………………………………...11
- •1. ОСНОВНЫЕ ПОНЯТИЯ ЦИФРОВОЙ ОБРАБОТКИ СИГНАЛОВ
- •1.1. Понятие о первичной и вторичной обработке сигналов
- •1.2. Технические средства комплекса обработки сигналов
- •2. ПОНЯТИЕ СИГНАЛОВ. ВИДЫ СИГНАЛОВ
- •2.2. Энергия и мощность сигнала
- •2.3. Представление периодических сигналов в частотной области
- •2.4. Представление в частотной области непериодических сигналов
- •2.4.1. Введение в теорию ортогональных преобразований
- •2.5. Свойства преобразования Фурье
- •2.6. Интегральное преобразование Хартли
- •2.7. Случайные сигналы
- •2.7.1.Модели случайных процессов
- •Числовые характеристики
- •Примеры случайных процессов с различными законами распределения
- •3. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ СИГНАЛОВ
- •3.1. Корреляционная функция (КФ):
- •3.2. Взаимная корреляционная функция
- •3.3. Взаимный спектр сигналов
- •3.4. Корреляционные функции случайных процессов
- •3.4.1. Стационарные и эргодические случайные процессы
- •3.5. Спектральные характеристики случайных процессов
- •3.5.1. Теорема Винера-Хинчина
- •3.6. Комплексная огибающая сигнала
- •4. ПЕРЕХОД ОТ АНАЛОГОВЫХ СИГНАЛОВ К ЦИФРОВЫМ
- •4.1. Дискретизация сигналов
- •Изменение частоты дискретизации. При решение различных задач обработки сигналов достаточно часто требуется изменение частоты дискретизации сигнала.
- •5.1. Линейные и нелинейные преобразования
- •Импульсная характеристика
- •Переходная характеристика
- •Комплексный коэффициент передачи (передаточная функция) системы:
- •Коэффициент передачи по мощности:
- •Взаимный спектр входного и выходного сигналов
- •Взаимная корреляция между входом и выходом
- •Корреляционная функция
- •Дисперсия на выходе:
- •5.3. Циклическая свертка и корреляция
- •5.5. Двумерная апериодическая свертка и корреляция
- •5.6 Нерекурсивные и рекурсивные фильтры
- •5.7. Метод синхронного или когерентного накопления
- •5.8. Адаптивные фильтры.
- •Рис.5.5. Адаптивный фильтр
- •5.8.1. Фильтр Винера-Хопфа.
- •5.10. Фильтр Калмана.
- •F=kBNX
- •6.1. Дискретное преобразование Фурье
- •6.2. Дискретное преобразование Хартли
- •6.3. Двумерные дискретные преобразования Фурье и Хартли
- •6.4. Ортогональные преобразования в диадных базисах
- •6.7. Выполнение фильтрации в частотной области
- •1) Фильтры нижних частот (ФНЧ) low-pass filter
- •2) Фильтры верхних частот (ФВЧ) hight-pass filter
- •3) Полосовые фильтры (ПФ) band-pass filter
- •4) Режекторные фильтры (ПФ) band-stop filter
- •Фильтр Баттерворта:
- •Фильтр Чебышева 1-го рода:
- •7. ВЕЙВЛЕТ ПРЕОБРАЗОВАНИЯ ИЛИ РАЗЛОЖЕНИЕ ПО ВСПЛЕСКАМ
- •7.1. Понятие о Wavelet-преобразованиях. Преобразование Хаара
- •7.2. Вейвлеты
- •7.2.1. Непрерывные вейвлет преобразования
- •7.2.2. Частотный подход к вейвлет преобразованиям
- •7.2.4. Дискретное вейвлет-преобразование
- •7.2.4.1. Условия полного восстановления сигнала
- •7.2.5. Пакеты вейвлетов (алгоритм одиночного дерева)
- •7.2.6. Целочисленное вейвлет-преобразование
- •Вейвлет-преобразование Лэйзи. Вейвлет-преобразование Лэйзи заключается в простом разбиении входного сигнала на четную и нечетную части. На этапах декомпозиции и реконструкции используются одни и те же формулы:
- •7.3. Применение вейвлет-преобразований для сжатия изображения
- •8. БЫСТРЫЕ АЛГОРИТМЫ ОРТОГОНАЛЬНЫХ ПРЕОБРАЗОВАНИЙ
- •8.1. Вычислительная сложность ДПФ и способы её сокращения
- •8.2. Запись алгоритма БПФ в векторно-матричной форме
- •8.3. Представление алгоритма БПФ в виде рекурсивных соотношений
- •8.4. Алгоритмы БПФ с прореживанием по времени и по частоте
- •Рис.8.4. Граф БПФ
- •8.6. Вычислительная сложность алгоритмов БПФ
- •8.7. Выполнение БПФ для случаев
- •8.8. Быстрое преобразование Хартли
- •Рис.8.7. Граф базовой операции БПХ, где
- •8.9. Быстрое преобразование Адамара
- •8.10. Выбор метода вычисления свертки / корреляции
- •9.1. Ранговая фильтрация
- •Рис. 9.1. Гистограмма распределения элементов по уровням
- •Гистограммный алгоритм ранговой фильтрации для окна размером М х М может быть представлен в следующем виде [16,21]:
- •9.2. Взвешенная ранговая фильтрация
- •9.3. Скользящая эквализация гистограмм
- •9.4. Преобразование гистограмм распределения
- •Рис.9.3. Глобальная эквализация гистограмм
- •ЛИТЕРАТУРА
54
Импульсная характеристика
Пусть сигнал на выходе системы
y(t) =T[x(t)]
x(t) |
y(t) |
T
Если x(t) =δ(t), то
y(t) =T[δ(t)] = h(t)
носит название импульсной характеристики или импульсного отклика системы.
y(t) = ∞∫ x(t1)h(t −t1)dt1 .
−∞
Переходная характеристика
Реакция системы на поданную на вход функцию единичного скачка, обозначается как g(t) . Так как δ -функция является производной по t от
функции единичного скачка, то:
h(t) = dgdt(t) или g(t) = ∫t h(t1)dt1
−∞
Комплексный коэффициент передачи (передаточная функция) системы:
x(t) |
y(t) |
T
Sвых(ω) = Sвх(ω) K(ω)
K(ω) = ∞∫ h(t)e− jωt dt – комплексный коэффициент передачи или передаточная
−∞
функция;
модуль K(ω) – АЧХ системы;
фаза K(ω) – ФЧХ системы;
Коэффициент передачи по мощности:
KM (ω) = K(ω) 2 = K(ω) K* (ω)
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
