Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Genetika_Barton_Guttman_i_dr_2004.pdf
Скачиваний:
139
Добавлен:
13.03.2016
Размер:
4.15 Mб
Скачать

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

113

штамма В они несущественны). Тогда, если смешать клетки К с двумя различными мутантами, можно узнать, производятся ли оба белка. На рис. 8.2 показано, как различные мутации могут воздействовать на эти гены. Допустим, обе мутации происходят в гене А. Так как функциональный белок А не производится, то фаг расти не может. Теперь предположим, что одна мутация затрагивает ген А, а другая — ген В. Теперь в одном фаге имеется функциональный ген В, а в другом — функциональный ген А. Если клетку одновременно заразить этими двумя фагами, то они могут дополнить друг друга (то есть быть комплементарными друг другу): каждый выполняет функцию, отсутствующую у другого, и оба они могут расти. (Еще раз заметим, что эти тесты проверяют только функции генов, они не учитывают кроссинговер и рекомбинации.)

Когда Бензер заразил бактерии Е. coli К смесью мутантов rII, он получил именно те результаты, которые и предсказывала модель. Мутационные участки расположены вдоль линии и разделены на две

210

Рис. 8.2. С помощью комплемвнтационного теста можно определить, происходят ли две мутации внутри одного гена или нет.

Бактерии одновременно заражают двумя фагами с двумя различными мутациями, которые затрагивают либо один ген (слева), либо два гена (справа). Если мутации затрагивают один ген, то ни в одном фаге не создается нормальной копии гена, поэтому фаги не могут размножаться. Но если мутации затрагивают оба гена, то один фаг имеет нормальный ген А, а другой нормальный ген В, и оба гена дополняют друг друга. Обратите внимание, что этот тест не имеет ничего общего с кроссинговером

группы. Ни один из мутантов по левой группе не дополнял мутантов по этой же группе, и то же самое было с правой частью. В то же время любой мутант из левой группы оказывался комплементарным к любому мутанту из правой группы. Эти результаты доказывают, что область rII действительно включает в себя два гена. (Хотя Бензер называл отдельную функциональную единицу цистроном, сейчас цистроном называют то же, что и ген.) Комплементационные тесты, подобные этому, в наши дни применяют ко всем организмам, чтобы узнать, происходят ли две мутации внутри одного гена или нет, и определить таким образом границу между генами.

211

Что же такое ген?

Вернемся к определению гена. В классической генетике словом «ген» обозначалась единица генетического материала, выделяемая по трем критериям: по функции, мутации и рекомбинации. Изначально предполагалось, что ген — это функциональная единица, то есть нечто,

Генетика / Бартон Гуттман, Энтони Гриффитс, Дэвид Сузуки, Тара Куллис. — М.: ФАИР-

ПРЕСС, 2004. — 448 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

114

определяющее отдельный признак. Такое представление сохранилось и до сих пор, но сейчас нам известно, что на один и тот же признак могут воздействовать различные гены и что при мутации гены могут давать один и тот же фенотип. Кроме того, ген определяли как единицу мутации. Эксперименты Бензера показали, что ген представляет собой линейную последовательность многих участков, в которых возможны разные мутации, и мы только что показали, как в комплементационных тестах можно выделять гены на основе происходящих в них мутаций. При этом ген понимается как последовательность, кодирующая синтез отдельной полипептидной цепи, и это представление основано на концепции Бидла и Тэйтема «один ген — один фермент». Гены они определяли и как единицы рекомбинаций, хотя сейчас известно, что гены не представляют собой неделимые «бусины» на цепи, а рекомбинации происходят и внутри генов. Это и следовало ожидать, если предположить, что ген представляет собой всего лишь участок ДНК, любые нуклеотидные пары которой могут изменяться, в результате мутации и рекомбинаций.

В свете последних исследований, особенно секвенирования (определения последовательности ДНК), приходится по-новому подходить к вопросу о том,

212

что представляет собой ген. Так, оказалось, что в ДНК эукариот последовательности, кодирующие синтез белков, прерываются некодирующими последовательностями, называемыми интронами, которые удаляются непосредственно перед синтезом белка. Иногда на протяжении одного участка ДНК кодирующие последовательности, прерываемые интронами, сочетаются по-разному и кодируют разные белки. Если отождествлять отдельный ген с производством отдельного белка, то приходится признать, что одна и та же последовательность ДНК в таких случаях содержит несколько генов. Это только одна из трудностей. Другая состоит в том, что экспрессию, или «включенность», генов контролируют последовательности на участках ДНК, примыкающих к кодирующей последовательности, но не входящих в нее. Мутации в контролирующих участках могут привести к утрате геном функции, точно так же как и мутации внутри кодирующей последовательности. Поэтому, если выделять ген по критерию мутации, приходится признать, что контролирующие участки тоже относятся к гену. И наконец, подробный анализ ДНКпоследовательностей целых геномов, включая и геном человека, предоставляют возможность опознать гены (по крайней мере, нечто вроде генов) на основании последовательности, а не мутаций. Белки со схожими функциями даже в очень отличающихся друг от друга организмах имеют много общего в строении. В настоящее время собраны обширные базы данных о ДНК-последовательностях, кодирующих белки; компьютерные программы могут просматривать все вновь определяемые последовательности и устанавливать возможные гены, предположительно кодирующие белки с

213

теми или иными функциями. Даже если новая последовательность оказывается совсем не похожей на те, что уже имеются в базе, ученые все равно могут сделать вывод, что это ген, на основании хорошо известных признаков, общих для всех генов. Исходя из самого поверхностного анализа человеческого генома возможно предположить, что он содержит 30 000—50 000 генов, но если одна последовательность может включать более одного

Генетика / Бартон Гуттман, Энтони Гриффитс, Дэвид Сузуки, Тара Куллис. — М.: ФАИР-

ПРЕСС, 2004. — 448 с: ил.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]