Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Genetika_Barton_Guttman_i_dr_2004.pdf
Скачиваний:
176
Добавлен:
13.03.2016
Размер:
4.15 Mб
Скачать

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

110

Многие предпочли бы не знать этого и в свободном обществе они имеют полное на то право. (Право на незнание стали рассматривать в недавнее время, в связи с развитием современной науки.) Однако некоторые люди были бы этому рады; такое знание избавило бы их от пугающей неопределенности и помогло бы оценить шансы завести здоровое потомство. Кроме того, медицина постоянно развивается, и появляются новые методы лечения наследственных нарушений, которые могут проявиться в более позднем возрасте, так что со временем ценность знания, что человек является переносчиком того или иного аллеля, будет только повышаться.

Аллель, который мы обозначили как а, мог быть либо геном с определенной функцией, выражаемой фенотипически, либо участком нейтральной вариации ДНК, таким, как полиморфизм длины рестрикционных фрагментов (см. далее). В обоих случаях фрагменты ДНК помогают определить наличие дефектного аллеля, но нейтральные участки встречаются чаще и потому они, как правило, более полезны.

204

Кроссинговер внутри генов

До середины 1940-х годов ученые полагали, что гены, скорее всего, представляют собой хромомеры, то есть крохотные комочки вдоль хромосом, благодаря которым хромосомы похожи на цепочки бус, и что кроссинговер происходит только между генами. Но некоторые опыты на плодовой мушке Drosophila melanogaster показали, что кроссинговер может происходить и внутри гена. Предположим, что в каком-то локусе двух гомологичных хромосом располагаются два явно выраженных мутантных аллеля; у мушки могут быть разные аллели, так что мушка гетерозиготна пр этим аллелям. У таких мух мутантный фенотип, потому что обе копии гена мутировали. Но иногда такие мушки дают нормальное, «дикое», потомство, которое могло бы появиться только в результате рекомбинации. Это значит, что ген представляет собой не неделимый кусок хромосомы, а линейную последовательность вдоль хромосомы и что различные аллели гена могут возникать в результате мутаций во многих местах этой последовательности, а между различными участками гена возможны рекомбинации. Обозначим два аллеля цифрами 1 и 2, а их нормальные («дикие») участки — знаком плюс. Для наглядности каждый «дикий» участок расположим напротив мутантного. Гетерозиготные по обоим аллелям мушки имеют следующий генотип:

с промежутком между двумя участками одного гена, где может происходить кроссинговер (очень

205

редко). В результате внутреннего кроссинговера получается одна копия полностью дикого гена и одна копия гена с обоими мутантными участками, то есть мутантного вдвойне:

В результате у мутантных мушек очень редко может появляться потомство с диким генотипом.

На примере таких редких событий можно составлять карту аллелей

Генетика / Бартон Гуттман, Энтони Гриффитс, Дэвид Сузуки, Тара Куллис. — М.: ФАИР-

ПРЕСС, 2004. — 448 с: ил.

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

111

внутри гена. Но внутригенный кроссинговер настолько редок (порядка одного на 5000—10 000 мейозов), что для составления таких карт потребуется пересчитать очень много мушек. Кроме того, необходим особый метод, чтобы легко рассекать на части гены любой особи.

Такой метод составления генных карт — весьма мощное средство, позволившее в подробностях исследовать гены многих организмов и вирусов. В сочетании с биохимическими технологиями, о которых мы расскажем далее, он помог ученым исследовать полную структуру генома многих вирусов, хотя о функциях некоторых генов известно еще мало. Далее мы расскажем, как исследовать структуру гена помогают фаги.

Генетика фагов

Макс Дельбрюк выбрал для своих исследований фаги, потому что они представляют собой очень простую биологическую систему: крохотные частички, которые могут воспроизводить себе подобных в других клетках и, как предполагалось, переносить

206

некий генетический материал. Первый серьезный эксперимент с фагами провел Херши, доказав, что различные штаммы фага Т2 могут рекомбинировать. Для этого ему, конечно, необходимо было выделить генетически разные штаммы, и первые обнаруженные им мутанты отличались формой стерильных пятен. Например, один из мутантов образует крупные пятна с четкими краями, и Херши обозначил его буквой r (от англ. rapid — быстрый, то есть быстро лизирующий мутант); мутанты tu (turbid — мутный) образуют мутные пятна; а мутанты mi (minute — мелкий) — очень маленькие пятна. Все эти мутанты имеют отчетливо выраженный фенотип, то есть легко обнаружить образованные ими пятна, выделить их и вырастить штамм фагов с генотипом, отличающимся от дикого.

Бактерии можно заразить несколькими фагами одновременно. Херши заражал клетки мутантами r и tu, взятыми в достаточном количестве, чтобы почти каждая клетка была заражена фагами обоих типов. Большая часть потомства этих фагов принадлежала к типам r или tu, но появлялось также некоторое количество двойных мутантов r, tu и диких фагов. Таким образом, взаимодействовать могут даже ДНК вирусов, образуя в процессе кроссинговера рекомбинации. Херши использовал в своих экспериментах несколько независимых мутантов и, приняв частоту рекомбинаций между ними за условное относительное расстояние (как в классической генетике), смог расположить участки их мутаций на генетической карте. С тех пор эта карта была дополнена и расширена.

207

Тонкая структура гена

Сеймур Бензер исследовал тонкую структуру гена с помощью фагов Т4, среди которых ему удалось выделить редкие внутригенные рекомбинанты. Бензер сосредоточил внимание на классе мутантов r — rII. Они растут и образуют большие стерильные пятна на штамме Е. coli В, но не растут на штамме Е. coli К. В отличие от них дикие формы rII+ растут и на В, и на К. Бензер обнаружил сотни новых мутантов rII, которые оказались полезными не только для составления карты, но и для уточнения того, что же, собственно, представляет собой ген.

Генетика / Бартон Гуттман, Энтони Гриффитс, Дэвид Сузуки, Тара Куллис. — М.: ФАИР-

ПРЕСС, 2004. — 448 с: ил.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]