Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biokhimia_otvety.docx
Скачиваний:
709
Добавлен:
10.03.2016
Размер:
172.73 Кб
Скачать

4) Кофермент - небелковая часть молекулы фермента

Билет 50

1. Цикл трикарбоновых кислот. Альтернативные названия. Химизм. Связь с тканевым дыханием. Аллостерические механизмы регуляции цикла. Энергетическимй эффект. Механизм интеграции с обменом белков, жиров и углеводов. Значение.

2. Метаболизм гликогена: химизм, локализация, регуляция, биологическое значение.

3. Витамин К: источники, коферментная форма (если известна); процессы в которых он участвует, возможные причины гиповитаминоза; биохимические сдвиги при гиповитаминозе.

4. Назовите представителей соединений, относящихся к липидам, и их роль в организме.

Ответ:

1) 79

2) Гликоген — депонированная форма глюкозы, высвобождает эту гексозу при участии гликогенфосфорилазы. Фермент катализирует фосфоролиз (расщеп­ление с присоединением компонентов фосфорной кислоты) 1,4-гликозидной связи, с высвобождением остатков глюкозы в виде глюкозо-1-фосфата (Г-1-Ф), который под действием фосфоглюкомутазы превращается в Г-6-Ф. Его воз­можные пути превращения"

1) в мышцах, где нет глюкозо-6-фосфатазы, по основному пути (аэробному или анаэробному);

2) в жировой ткани и других, где идут интенсивные восстановительные синтезы, по пентозофосфатному пути (для накопления НАДФ • Нд);

3) в печени, где много глюкозо-6-фосфатазы, расщепляется на глюкозу и фосфат, глюкоза поступает в кровь.

Таким образом, гликоген выполняет функцию источника глюкозы крови или источника субстрата ПФП и аэробного превращения.

Синтезируется гликоген за счет глюкозо-1-фосфата, который, взаимодейст­вуя с УТФ, образует УДФ-глюкозу (см. стр.87).

УДФ-глюкоза выполняет роль донатора остатков глюкозы, акцептором которых являются олигосахариды"

УДФ-глюкоза + (Глюкоза)п ———>> УДФ + (Глюкоза)п+1. Катализирует эту реакцию гликогенеинтетаза — фермент обеспечивает образование линейных участков гликогена. Образование ветвлений обеспечивает фермент — амило-1,4-1,6-гликозилтрансфераза.

Метаболизм галактозы и фруктозы

Галактоза и фруктоза вступают на путь гликолиза, преобразуясь в метабо­литы этого процесса

Галактоза + АТФ ———'• Галактозо-1-фосфат + АДФ (катализатор — галактокиназа)

Затем следует обменная реакция, катализируемая галактозо-1-фосфат-уридилтрансфераэой'

Галактозо-1-фосфат + УДФ ———- УДФ-галактоза + фосфат

Далее галактоза в составе УДФ под действием эпимеразы (УДФ-галактозо-4-эпимераза) меняет конфигурацию ОН-группы при С-4, инвертируется в глюкозо-1-фосфат, освобождаясь одновременно от УДФ'

эпимераза Галактозо-1-УДФ ————————> Глюкозо-1 -фосфат + УДФ

Фруктоза в печени превращается по фруктозо-1-фосфатному пути:

(реакция двустадийная, катализирует ее фрукто-1-фосфатальдолаза и триозокиназа).

В жировой ткани фруктоза может метаболизировать непосредственно в фруктозо-6-фосфат — промежуточный продукт основного пути окисления глюкозы

3) Витамин К – антигеморрагический фактор. Поступает в организм с растительной (капуста, фрукты) и животной (печень) пищей, а также стимулируется микрофлорой кишечника.

Существует 2 ряда витамина К – филлохиноны К1-ряда и менахиноны – витамины К2-ряда. Первые содержатся в растениях, вторые синтезируются кишечными бактериями.

Функционирует в качестве кофактора карбоксилирования остатков глутаминовой кислоты в некоторых белках свертывания крови. Витамин К участвует в активации факторов свертывания крови.

Причина недостаточности вызвана нарушением образования его в кишечнике, или нарушением всасывания.

Признаки авитаминоза – нарушение свертывающей системы крови, а значит сильные кровотечения.

4)

Билет 51

1. Коллаген. Особенности аминокислотного состава и структурной организации молекулы. Предшественник и его трансформация в коллаген. Значение витамина С. Особенности метаболизма. Основные функции.

2. Кетоновые тела: определение понятия, представители, механизм их образования в норме. Значение. Причины кетонемии (кетонурии): условия, механизмы активации образования кетоновых тел, возможные последствия.

3. Альдостерон, вазопрессин: место и регуляция секреции. Органы - мишени. Биохимические эффекты.

4. Назовите основные пищевые углеводы.

Ответ:

1) Коллаген – фибриллярный белок межклеточного матрикса. Молекула коллагена включает 3 пептидные цепи аминокислотных остатков: больше всего приходится на глицин, меньше на пролин и гидроксипролин, и меньше всего на аланин. Кроме того в составе коллагена имеется оксилизин.

Пептидные цепи коллагена образованы последовательностью триплетов Гли-X-Y, где X и Y аминокислоты, чаще пролин и оксилизин.

Каждая из 3х полипептидных цепей молекулы коллагена спиралевидна. Из этих 3х спиралей образуется плотная спираль второго порядка, в которой цепи расположены параллельно. За счет пептидных групп между спиралями возникают водородные связи.

В Состав коллагена входят моносахариды и дисахариды, связанные через гидроксильные группы остатков оксилизина.

Трехцепочные молекулы коллагена, соединяясь, образуют микрофибриллы. Из них происходят более толстые фибриллы, а из них – волокна, а затем пучки волокон. За счет взаимодействия остатков оксилизина между молекулами коллагена в фибриллах возникают ковалентные связи.

Основные продуценты коллагена – фибриллы. Синтез коллагена включает наряду со стадией трансляции этап протрансляционной модификации, ведущей к образованию проколлагена (предшественник) из полипептидных цепей и образование коллагеновых волокон.

Гидроксилирование пролиновых и лизиновых остатков в полипептидных цепях проколлагена происходит одновременно со сборкой цепей. В этом процессе участвует молекулярный кислород и альфа-кетоглуторат, а в качестве кофактора – двувалентное железо и аскорбиновая кислота в роли восстановителя, обеспечивающего сохранение железа в 2валентном состоянии.

Гидроксилирование – это обязательный этап трансформации проколлагена, обеспечивающий образование трехспиральной структуры коллагена.

Дефицит аскорбиновой кислоты проявляется главным образом за счет нарушения этого процесса и его следствие – разрыхленная соединительная ткань.

2) Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят b-оксимасляную и ацетоуксусную кислоты и ацетон. Количество их в условиях нормы невелико.

Появление повышенных количеств К. т. в крови и моче является важным диагностическим признаком, свидетельствующим о нарушении углеводного и жирового обменов.

Главным путем синтеза К. т., происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при b-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Этот путь синтеза К. т. более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ.

Из печени К. т. поступают в кровь и с нею во все остальные органы и ткани, где они включаются в цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. К. т. используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот.

Кетонемия (кетоновые тела в крови) может наступить в результате усиленного, но недостаточно полного окисления жирных кислот, что в большинстве случаев связано с уменьшением в организме запасов углеводов. Обнаружение кетоновых тел в общем анализе мочи называют - кетонурия. В норме кетоновые тела в моче не обнаруживаются, так как ежедневно выводятся из организма органами выделения.

 К причинам накапливания в моче кетоновых тел относятся многие причины, некоторые из них несут угрозу нормальной жизнедеятельности организма. Вот одни из причин:

  • длительное голодание организма;

  • общее переохлаждение;

  • физические перегрузки;

  • беременность;

  • чрезмерное употребление белков с пищей;

  • грипп;

  • анемия;

  • рак и другие заболевания.

При голодании в крови падает концентрация глюкозы, а при диабете глюкоза не поступает в клетку с необходимой скоростью. В результате начинается усиленный липолиз для высвобождения необходимой энергии. Мобилизованные жировые кислоты направляются из жировых депо в печень, где и образуются кетоновые тела. Пока их количество в пределах нормы, периферические ткани успевают произвести их окисление и получить, таким образом, недостающую энергию. При превышении нормы скорости окисления не хватает, и кетоны накапливаются в кровотоке.

    При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, т.к. все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез К. т.

Введение с пищей углеводов тормозит образование К. т. Инсулин стимулирует синтез жирных кислот из ацетил-КоА и активирует использование последнего в цикле трикарбоновых кислот, в результате чего снижается интенсивность синтеза К. т.

При обнаружении кетоновых тел в моче при сахарном диабете, медики говорят о переходе заболевания в более тяжелую стадию. Очень большое содержание в моче ацетона и уксусной кислоты при сахарном диабете, свидетельствует о приближении состояния гипергликемической комы у больного.

3) Альдостерон - наиболее активный минералокортикостероид, синтезирующийся в коре надпочечников из холестерола. Его мишени – клетки эпителия дистальных канальцев нефрона. Он как липофильное соединение проникает в ядра этих клеток и активирует транскрипцию генов, содержащих информацию о структуре натрий-транспортных белков эпителия канальцев. Это приводит к усилению переноса ионов натрия из первичной мочи в межклеточную жидкость с последующим переходом его в кровь, к усилению реабсорбции натрия. Т.е. альдостерон увеличивает канальцевую реабсорбцию натрия и секрецию калия.

Вазопрессин – гормон нейрогипофиза, образуется в супраоптических и паравентрикулярных ядрах гипоталамуса из полипептидов-предшественников, мигрирует по аксонам гипоталамо-гипофизарного тракта в нейрогипофиз, накапливаясь в нем. Секреция контролируется меланолиберином и меланостатином.

Мишени вазопрессина – артериолы и капилляры легочных и коронарных сосудов. Гормон вызывает их сужение, что сопровождается повышением артериального давления и связанным с этим расширением мозговых и почечных сосудов. Еще одна мишень – дистальные извитые канальцы и собирательные трубочки нефрона. Эффект реализуется через аденилатциклазную систему. Это проявляется активацией гиалуронидазы, усиленным расщеплением гиалуроновой кислоты и связанным с этим ростом проницаемости канальцевого эпителия.

В результате увеличения проницаемости ускоряется реабсорбция воды, что ведет к уменьшению объема конечной мочи.

При введении вазопрессина извне происходит уменьшение диуреза. Поэтому он называется антидиуретическим. Дефицит гормона – полиурия и полидипсия (увеличение жажды).

4) Мальтоза, лактоза, сахароза, крахмал, гликоген и целлюлоза.

Соседние файлы в предмете Биохимия