- •Теория вероятностей и математическая статистика
- •Теория вероятностей
- •1. Общие понятия
- •1.1. Предмет теории вероятностей
- •1.2. Пространство элементарных событий
- •1.3. Операции над событиями
- •1.4. Статистический подход к понятию вероятности
- •1.5. Элементы комбинаторики
- •1. Перестановки.
- •2. Сочетания.
- •3. Размещения.
- •1.6. Классическое определение вероятности
- •1.7. Аксиоматическое определение вероятности
- •2. Основные теоремы теории вероятностей
- •2.1. Теорема умножения вероятностей
- •2.2. Теорема сложения вероятностей
- •2.3. Формула полной вероятности
- •2.4. Формула Бейеса
- •3. Повторение испытаний
- •3.1. Независимые испытания. Формула Бернулли
- •3.2. Локальная теорема Муавра – Лапласа
- •3.3. Интегральная теорема Лапласа
- •3.4. Теорема Пуассона
- •3.5. Вероятность отклонения частоты от постоянной вероятности в независимых испытаниях
- •4. Случайные величины и функции распределения
- •4.1. Случайные величины
- •4.2. Функция распределения вероятностей для дискретной св
- •4.3. Функция распределения вероятностей для непрерывной св.
- •4.4. Функция плотности распределения вероятностей
- •5. Числовые характеристики случайных величин
- •5.1. Математическое ожидание случайной величины
- •5.2. Дисперсия и среднее квадратическое отклонение св
- •5.3. Моменты и другие числовые характеристики случайной величины
- •6. Основные законы распределения случайных величин
- •6.1. Законы распределения дискретных случайных величин
- •6.1.1. Биномиальное распределение
- •6.1.2. Распределение Пуассона
- •6.1.3. Геометрическое распределение
- •6.2. Законы распределения непрерывных случайных величин
- •6.2.1. Равномерное распределение
- •6.2.2. Показательное распределение
- •6.2.3. Нормальное распределение
- •7. Закон больших чисел
- •7.1. Неравенства Чебышева
- •7.2. Теорема Чебышева
- •8. Многомерные случайные величины
- •8.1. Многомерные случайные величины и их функции распределения
- •X и y независимые случайные величины.
- •8.2. Вероятность попадания двумерной случайной величины
- •8.3. Числовые характеристики двумерной случайной величины
- •Математическая статистика
- •1. Статистические законы распределения выборки
- •1.1. Вариационный ряд
- •1.2. Полигон и гистограмма
- •1.3. Эмпирическая функция распределения
- •2. Статистические оценки параметров распределения
- •2.1. Точечные оценки
- •2.2. Интервальные оценки
- •2.3. Оценка вероятности появления события через его частоту
- •3. Проверка статистических гипотез.
- •3.1. Статистические гипотезы
- •3.2. Критерии проверки гипотезы
- •3.3. Критерий согласия Пирсона
- •3.4. Критерий согласия Романовского
- •4. Элементы теории корреляции
- •4.1. Статистические зависимости
- •4.2. Линейная регрессия
- •4.3. Корреляционная таблица
- •4.4. Выборочный коэффициент корреляции
- •Литература
- •С о д е р ж а н и е
4.3. Корреляционная таблица
При большом числе наблюдений одно и то же значение случайной величины Х может встретиться раз, одно и то же значение случайной величиныY может встретиться раз, а одна и та же пара чисел (х, у) может наблюдаться раз. Поэтому данные наблюдений группируют, т.е. подсчитывают частоты,,. Все сгруппированные данные за-писывают в виде таблицы, которую называют корреляционной.
Поясним ее строение на простом примере. Имеем таблицу:
Y X |
1 |
2 |
3 |
4 |
5 | |
1 |
|
|
|
6 |
4 |
10 |
0 |
|
|
1 |
4 |
6 |
11 |
1 |
|
5 |
9 |
5 |
|
19 |
2 |
3 |
7 |
|
|
|
10 |
3 |
12 |
10 |
15 |
10 |
В первой строке указаны наблюдаемые значения (1, 2, 3, 4, 5) слу-чайной величины Х, а в первом столбце таблицы – наблюдаемые значения (1, 0, 1, 2) случайной величины Y. На пересечении строк и столбцов находятся частоты наблюдаемых пар значений случайных величин Х и Y. Например, частота 6 указывает, что пара чисел (4, 1) наблюдалась 6 раз. Все частоты помещены в прямоугольнике, стороны которого проведены жирными линиями.
В последнем столбце записаны суммы частот строк. Например, сумма частот второй строки равна - это число указывает, что значение случайной величины Y, равное 0 (в сочетании с различными значениями случайной величины Х ), наблюдалось 11 раз.
В последней строке записаны суммы частот столбцов. Например, сумма частот четвертого столбца равна - это число указывает, что значение случайной величины Х, равное 4 (в сочетании с различными значениями случайной величины Y ), наблюдалось 15 раз.
Общее число наблюдений
4.4. Выборочный коэффициент корреляции
Ранее мы полагали, что значения Х и соответствующие им значения Y наблюдались по одному разу. На практике, безусловно, одна пара случайных величин (х, у) может наблюдаться любое число раз.
Поэтому формула для коэффициента регрессии (4.4) примет вид
(4.5)
где в сумме учтено, что пара (х, у) наблюдалась раз, а и выборочные средние квадратические отклонения случайных величин Х и Y.
Умножим обе части равенства (4.5) на дробь и назовем это выражение выборочным коэффициентом корреляции
Тогда уравнение линейной регрессии Y на Х будет иметь вид
Замечание 2. Выборочный коэффициент корреляции является безраз-мерной оценкой коэффициента регрессии
Таким образом, основная задача корреляционного анализа состоит в оценке степени линейной связи между случайными величинами Х и Y, которая устанавливается при помощи выборочного коэффициента корре-ляции
Если выборочный коэффициент корреляции мал, то линейная связь считается слабой и ее можно не принимать во внимание. Если же выборочный коэффициент корреляцииблизок к1, то линейная связь сильная и к ней следует относиться практически как к функциональной. В противном случае, связь принято считать статистической. И, наконец, при связь между случайными величинамиХ и Y имеет строго линейный характер.
Замечание. Выборочный коэффициент корреляции является лишь оценкой теоретического коэффициента корреляциигенеральной сово-купности, поэтому возникает необходимость проверить гипотезу о значи-мости выборочного коэффициента корреляции. Однако, если выборка имеет достаточно большой объем и хорошо представляет генеральную совокупность, т.е. является репрезентативной, то вывод (гипотезу) о ли-нейной зависимости между случайными величинами Х и Y , полученный по данным выборки, можно распространить и на всю генеральную сово-купность.
Например, для оценки теоретического коэффициента корреляции генеральной совокупности (если она распределена нормально) можно воспользоваться формулой