
- •А.А. Силич, т.А. Миронова, ф.В. Авдощенко
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •Рис 1.11. Аксонометрическое изображение модели
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •Рис 2.4 Прямые частного положения
- •Рис 2.5 Проекция прямой частного положения
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •Рис 2.12 Проекция прямого угла
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •А) в диметрии; б) на эпюре
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Рис 3.12 Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •Рис 4.2. Преобразование чертежа точки на эпюре
- •Рис 4.3. Преобразование чертежа прямой
- •Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
- •Рис 4.5. Преобразование чертежа
- •Рис 4.7. Преобразование плоскости общего положения
- •Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
- •Рис 4.9. Преобразование плоскости общего положения в плоскость уровня
- •Рис 4.10. Вращение точки вокруг оси в диметрии
- •Рис 4.11. Вращение точки вокруг оси на юпюре
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •A) б)
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Содержание
- •Глава 3. Относительное положение прямой и
2.3. Взаимное положение прямых линий
Если прямые параллельны, то их одноименные проекции параллельны.
Если прямые линии пересекаются, то их одноименные проекции пересекаются между собой в точках, которые являются проекциями точки пересечения этих прямых.
Скрещивающиеся прямые линии не пересекаются и не параллельны между собой, хотя проекции их могут пересекаться или быть параллельными.
Точки пересечения этих проекций не лежат на одной линии связи. Одной точке 1v соответствуют две точки 1н и 1'н. Эти точки лежат на одном перпендикуляре к плоскости V (Рис.2.9а, б, в).
Рис. 2.9. Взаимное положение отрезков на эпюре:
А) параллельные; б) пересекающиеся; в) скрещивающиеся
2.3.1. Конкурирующие точки
Точки, лежащие на одном перпендикуляре к плоскости проекций, называются конкурирующими относительно этой плоскости (Рис.2.10а, б).
По конкурирующим точкам определяется видимость геометрических образов на эпюре. Видимой на данной проекции всегда будет та из конкурирующих точек, которая лежит дальше от этой плоскости проекций, следовательно, ближе к зрителю. Точки А и В являются фронтально конкурирующими. На фронтальной плоскости проекции будет видима точка А, т.к. она дальше от плоскости V и ближе к наблюдателю. Точки А и С – горизонтально конкурирующие. На горизонтальной плоскости проекций будет видима также точка А, т.к. она отстоит от плоскости Н дальше, чем точка С.
Рис. 2.10. Конкурирующие точки: а) в диметрии; б) на эпюре
2.4. Проекции плоских углов
Две пересекающиеся прямые образуют плоский угол.
Если угол расположен в плоскости, параллельной плоскости проекций, то он проецируется на нее в натуральную величину.
В общем случае плоский угол, стороны которого не параллельны плоскости проекций, проецируется на эту плоскость с искажением.
2.4.1. Теорема о проекциях прямого угла
Для того, чтобы прямой угол проецировался ортогонально в виде прямого угла, необходимо и достаточно, чтобы по крайней мере, одна из его сторон была параллельна плоскости проекций, а вторая – не перпендикулярна к этой плоскости (Рис.2.11а, б).
Рис. 2.11. Проекции прямого угла на эпюре:
А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
Доказательство: Пусть имеем в пространстве прямой угол ВАС. Проецируем его на плоскость Н ортогонально. Предположим, что сторона АВ данного угла параллельна плоскости Н. Тогда имеем: ВАС = 90˚; АВ || Н; ААнН. Докажем, что ВнАнСн = 90º (Рис.2.12). АнАВ = 90°, т.к. фигура ААнВВн – прямоугольник. Следовательно, прямая АВ перпендикулярна к проецирующей плоскости Q как перпендикулярная к двум прямым этой плоскости (АВАС; АВААн). Поэтому АВQ, но АнВн || АВ отсюда и АнВн Q, а это означает, что ВнАнСн = 90º.
Рис 2.12 Проекция прямого угла
Задача: Определить расстояние от точки А до фронтали (Рис.2.13).
Решение. Прямой угол между искомым перпендикуляром и фронталью ВС проецируется в натуральную величину на плоскость V. Натуральная величина перпендикуляра АК может быть найдена методом прямоугольного треугольника.
Рис. 2.13. Определение расстояния от точки А до фронтали ВС