
- •А.А. Силич, т.А. Миронова, ф.В. Авдощенко
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •Рис 1.11. Аксонометрическое изображение модели
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •Рис 2.4 Прямые частного положения
- •Рис 2.5 Проекция прямой частного положения
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •Рис 2.12 Проекция прямого угла
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •А) в диметрии; б) на эпюре
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •Рис 3.6. Построение линии пересечения двух плоскостей, не имеющих общих точек
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Рис 3.12 Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •Рис 4.2. Преобразование чертежа точки на эпюре
- •Рис 4.3. Преобразование чертежа прямой
- •Рис 4.4. Определение натуральной длины отрезка а) и угла α; б) и угла β
- •Рис 4.5. Преобразование чертежа
- •Рис 4.7. Преобразование плоскости общего положения
- •Рис 4.8. Преобразование горизонтально проецирующей плоскости в плоскость уровня
- •Рис 4.9. Преобразование плоскости общего положения в плоскость уровня
- •Рис 4.10. Вращение точки вокруг оси в диметрии
- •Рис 4.11. Вращение точки вокруг оси на юпюре
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •A) б)
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •Содержание
- •Глава 3. Относительное положение прямой и
Глава 1. Метод проецирования
1.1. Центральная проекция
Выберем в пространстве плоскость проекций, которую обозначим буквой Р. Выберем также точку S, не лежащую в плоскости Р, и назовем ее центром проекций (Рис.1.1).
Рис. 1.1. Центральная проекция точек
Плоскость Р и точка S составляют аппарат центрального проецирования. Проецирование проводится следующим образом: если дана произвольная точка А пространства, то для построения ее проекции на плоскость Р проводится прямая SA и находится точка пересечения Ар прямой SA с плоскостью Р. Точка Ар является центральной проекцией точки А на плоскость Р.
Прямая SA называется проецирующей.
Для построения проекций нескольких точек следует через взятые точки и центр проекций провести проецирующие прямые до пересечения их с плоскостью Р. Полученные точки и будут являться центральными проекциями соответствующих точек А, В, С.
При заданном центре и плоскости проекций данная точка имеет единственную проекцию, так как проецирующая прямая может пересечься с плоскостью проекций только в одной точке. Одна проекция точки не определяет ее положения в пространстве, т. к. на проецирующей прямой, например, SDPможет лежать множество точек, как-то точкиD1иD2(Рис.1.1).
1.2. Параллельная проекция
Если центр проекций удалить в бесконечность, то проецирующие прямые станут параллельны между собой. Вместо центра проекций задается направление проецирования S (см. рис.1.2) и плоскость проекций Р. Проекции точек А, В и т.д. можно получить, если провести проецирующие прямые ААр, ВВр и т.д., параллельно S.
Рис. 1.2. Параллельная проекция точек
Ар, Вр, Ср – проекции соответствующих точек.
В зависимости от направления проецирования параллельные проекции делятся на прямоугольные (SP) и косоугольные (S не Р).
1.2.1. Свойства параллельных проекций
Проекция прямой линии есть прямая линия (Рис.1.3). Плоскость, определяемая двумя пересекающимися прямыми АВ и ААр, пересекает плоскость проекций Р по прямой АрВр.
Исключение составляет проекция прямой линии, которая параллельна направлению проецирования. Такая прямая проецируется в точку (Рис.1.3).
Следствия из свойства.
Если точка лежит на прямой, то ее проекции лежат на соответствующих проекциях прямой (Рис.1.3).
Если две прямые пересекаются, т.е. проходят через одну точку Е, то и соответствующие проекции этих прямых пересекаются, проходят через проекции точек пересечения Ер (Рис.1.4).
Если прямые АВ и СD параллельны, то и соответствующие их проекции параллельны, т.е. АрВр CpDp (Рис.1.5).
Отношение
отрезков параллельных прямых равно
отношению их проекций:(Рис.1.6).
Отношение отрезков прямой равно отношению их проекций (Рис.1.7).
Рис. 1.3. Проекции прямых линий Рис. 1.4. Проекции пересе-
кающихся прямых
Рис. 1.5. Проекции параллельных Рис. 1.6. Проецирование
прямых отрезков прямой
Рис. 1.7. Проекции отрезков параллельных прямых
1.3. Показатели искажения
Отношение длины проекции отрезка к длине самого отрезка называется показателем искажения К отрезка (Рис.1.6), величина которого определяется из следующего соотношения:
При косоугольном проецировании длина проекции может быть равна, больше или меньше длины самого отрезка. Показатель искажения может быть равен, больше или меньше единицы, т.е. 0 ≤ К ≤ (Рис.1.8).
Если отрезок BD параллелен плоскости проекций Р – он проецируется без искажения К=1. Если отрезок EF параллелен направлению проецирования S, он проецируется в точку К=0. Если величина угла между направлениями проецирования и плоскостью проекций близка к нулю, то длина проекции отрезка приближается к бесконечности К .
При прямоугольном проецировании длина проекции отрезка может быть равна или меньше длины самого отрезка. Показатель искажения может быть равен или меньше единицы 0 ≤ К≤ 1 (Рис.1.9).
Из рассмотренных ранее рисунков (Рис.1.1 – Рис.1.9) видно, что при заданном направлении проецирования и плоскости проекций данная точка или система точек имеют единственную проекцию. Задав
Рис. 1.8. Коэффициент искажения Рис. 1.9. Коэффициент искаже-
при косоугольном проецировании ния при прямоугольном
проецировании
плоскость проекций и направление проецирования можно получить изображение пространственной формы на плоскости проекций. Однако на одной проекции не выполняется требование обратимости, предъявляемое к чертежу, т.е. по одному изображению не возможно воспроизвести заданную форму в пространстве. Возникает необходимость изучения в курсе начертательной геометрии способов построения обратимых чертежей. Наиболее распространенным способом построения обратимых чертежей является прямоугольное проецирование на 2…3 взаимно перпендикулярные плоскости.