
- •Теория автоматического управления
- •В. П. Кузнецов, с. В. Лукьянец, м. А. Крупская
- •Часть 1
- •I-53 01 07 «Информационные технологии и управление
- •Введение
- •1. Общие сведения о системах автоматического управления
- •1.1. Основные понятия и определения
- •1.2. Классификация систем автоматического управления
- •1.3. Примеры систем автоматического управления
- •2. Математическое описание звеньев систем автоматического управления
- •2.1. Уравнения звеньев
- •2.2. Линеаризация уравнений динамики звеньев
- •2.3. Передаточная функция и временные характеристики звеньев
- •2.4. Частотные характеристики звеньев
- •2.5. Элементарные звенья и их характеристики
- •2.6. Особенности и физическая реализуемость звеньев
- •3. Математическое описание систем автоматического управления
- •3.1. Структурные схемы и структурные преобразования
- •3.2. Передаточные функции и уравнения систем
- •3.3. Частотные характеристики систем
- •4. Процессы в системах автоматического управления
- •4.1. Общее описание процессов
- •4.2. Аналитические методы вычисления процессов
- •4.3. Моделирование переходных процессов на пэвм
- •5. Устойчивость процессов в системах автоматического управления
- •5.1. Понятие устойчивости линейных систем
- •5.2. Алгебраические критерии устойчивости
- •5.3. Критерий устойчивости Михайлова
- •5.4. Критерий устойчивости Найквиста
- •5.5. Построение областей устойчивости
- •6. Точность систем автоматического управления
- •6.1. Понятие точности. Постоянные ошибки
- •6.2. Установившиеся ошибки при произвольном входном сигнале
- •6.3. Установившиеся ошибки при гармоническом воздействии
- •7. Оценки качества переходных процессов
- •7.1. Корневые оценки качества
- •7.2. Интегральные оценки качества
- •7.3. Частотные оценки качества
- •8. Уравнения состояния линейных систем
- •8.1. Описание систем управления с помощью уравнений состояния
- •8.2. Схемы моделирования и виды уравнений состояния
- •8.3. Преобразование уравнений состояния
- •8.4. Нормальная форма уравнений состояния одномерной системы
- •8.5. Каноническая форма уравнений состояния одномерной системы
- •8.6. Переходная матрица состояния
- •8.7. Передаточная и весовая матрицы
- •8.8. Устойчивость, управляемость и наблюдаемость линейных систем
- •9. Синтез систем автоматического управления
- •9.1. Предварительные замечания
- •9.2. Корректирующие устройства
- •9.3. Корректирующие устройства по внешнему воздействию
- •9.4. Синтез сау на основе логарифмических частотных характеристик
- •9.5. Модальный метод синтеза (метод размещения полюсов)
- •Приложение
- •Литература
- •Теория автоматического управления
- •Часть 1
1.2. Классификация систем автоматического управления
Классификацию систем автоматического управления осуществляют в зависимости от признаков, в качестве которых могут быть принципы работы, алгоритмы функционирования, структуры систем, вид представления отдельных элементов, вид математических моделей, области применения и др.
По виду алгоритмов функционирования системы автоматического управления делятся на системы стабилизации (V = const, поддерживается некоторое постоянное значение выхода Y, рис. 1.8), системы программного управления (вход V должен изменяться по заданной программе), следящие системы – закон изменения входного сигнала v неизвестен заранее. Примерами таких систем соответственно являются системы стабилизации скорости вращения и частоты; система автоматического управления промышленного робота, работающая в режиме отработки заданных (программных) движений; радиолокационные следящие системы измерения координат движущегося объекта. С развитием практики и теории автоматического управления появляются новые классы систем: системы с поиском экстремума показателя качества, системы оптимального упрaвления, адаптивныe систeмы.
Приведем
классификацию систем по виду законов
управления.
под
законом управления будем понимать
зависимость выходного сигнала регулятора
u
от сигнала
ошибки e.
Для простоты примем,
что u
и
Е
– скалярные
величины, которые обозначим малыми
буквами; тогда в общем случае закон
управления будет иметь вид:
.
Простейшими случаями этого соотношения являются:
пропорциональный закон (П-закон):
интегральный закон (И-закон):
пропорционально-интегральный закон (ПИ-закон):
;
пpопоpционально-интeгально-диффepeнциальный закон (ПИД-закон):
,
где K – коэффициент передачи; а T, T1, T2 – постоянные времени.
По
количеству
управляемых
координат
системы делятся на одномерныe
()
имногомеpныe,
или многосвязныe
(
)
(см. рис. 1.1).
По характеру протекающих процессов системы делятся на непрерывные (все сигналы непрерывны во времени) и импульсные (хотя бы один из сигналов дискретизирован (квантован) во времени). Если хотя бы один из сигналов в системе является квантованным по уровню, то она относится к релейным системам. При одновременном квантовании сигнала по уровню и времени систему относят к цифровым. Релейные, импульсные и цифровые системы составляют класс дискретных систем автоматического управления.
По зависимости выходных сигналов отдельных элементов от входных системы делятся на линейные и нелинейные.
По виду параметров, характеризующих отдельные элементы и устройства, системы делятся на системы с сосредоточенными или распределенными параметрами, стационарные (все параметры постоянны во времени), нестационарные (параметры изменяются во времени), системы с детерминированными параметрами (закон изменения параметров известен), со случайными (стохастическими) параметрами (заданы их вероятностные характеристики), с неопределенными параметрами (может, например, задаваться только область их изменения).
Приведенная классификация не охватывает всех классов существующих систем. Например, можно выделять еще системы с запаздыванием, системы с перестраиваемой структурой. Адаптивные системы делятся на самонастраивающиеся и самоорганизующиеся.