Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТАУ Консп.лек.Ч.1,2007.doc
Скачиваний:
162
Добавлен:
24.02.2016
Размер:
12.62 Mб
Скачать

8.6. Переходная матрица состояния

Пусть линейная САУ описывается уравнениями состояния:

, ,,,. (8.27)

Рассмотрим матричный ряд, который обозначим через :

, (8.28)

где Е – единичная матрица.

Доказано, что этот ряд абсолютно сходится при любом t к некоторой матрице, обозначенной нами через(экспоненциал матрицы).

Свойства ряда (8.28):

1. При матрица.

2.

, или в более общем виде .

  1. , где – обратная матрица.

  2. Если , то .

Рассмотрим однородное уравнение

, (8.29)

соответствующее неоднородному дифференциальному уравнению , и зададим начальное состояние векторах(0) при t = 0.

Общее решение однородного уравнения (8.29) задается выражением

. (8.30)

Действительно, подставляя (8.30) в (8.29), с учетом свойства 2 получим тождество, справедливое при любом начальном значении х(0). Это значит, что (8.30) определяет общее решение уравнения (8.29).

Введем обозначение . Матрицуразмерностьюбудем называтьпереходной матрицей состояния (в математике ей соответствует фундаментальная матрица), а выражение (8.30) в этом случае будем записывать в виде

. (8.31)

Выражение (8.31) можно трактовать как линейное преобразование (переход) начального значения вектора состояния х(0) в текущее значение x(t) в пространстве состояний.

Свойства переходной матрицы состояния:

1. .

2. .

3. .

Эти свойства следуют из общих свойств экспоненциала матрицы.

Если известна переходная матрица состояния, то общее решение неоднородного уравнения записывается в виде (формула Коши)

. (8.32)

В силу получим выражение для вычисления вектора выхода y(t):

. (8.33)

В (8.32), (8.33) первое слагаемое определяет свободную составляющую, обусловленную ненулевым начальным состоянием х(0), а второе – вынужденную составляющую, обусловленную входным сигналом .

Выражение (8.28) редко употребляется для определения матрицы , так как в случае произвольной матрицыА элементы матрицы представляют собой ряды Тейлора приt = 0, пo которым трудно найти исходную функцию в замкнутой форме.

Переходную матрицу состояния обычно находят с помощью операционного исчисления. Применим к (8.29) преобразование Лапласа, тогда получим , где. Из полученного выражения находим,, где– обратная матрица к матрице.

Переходя к оригиналам, имеем

. (8.34)

Сравнивая (8.34) с (8.31), приходим к выводу, что

. (8.35)

Каждый элемент матрицы есть дробно-рациональная функция переменнойs. Знаменатель каждого элемента представляет собой полином n-й степени , а числитель – полином не выше (n – 1)-й степени. Полином называется характеристическим полиномом системы, а алгебраическое уравнение n-й степени

(8.36)

назовем характеристическим уравнением системы.

Применяя к каждому элементу матрицы обратное преобразование Лапласа, получим матрицу, элементами которой будут некоторые функции времени.

Переходную матрицу состояний можно найти, используя модальную матрицу M. Пусть в уравнении (8.29) матрица А имеет различные собственные значения . Тогда в (8.29) сделаем замену переменных, гдеМ – модальная матрица. В результате получим: .

Общее решение полученной системы с диагональной матрицей будет таково: . Так как,, то общее решение исходного уравнения (8.29) запишется в виде.

Отсюда следует, что

. (8.37)

Пример 8.7. Рассмотрим однородное уравнение в нормальной форме:

.

Собственные числа матрицы А определяются из решения уравнения и будут,.

Ищем модальную матрицу М в виде (8.14):

, .

Находим в соответствии с (8.37):

.

Можно найти , используя (8.35). Находими затем.

, .

Переходя от к оригиналам, найдем выражение для матрицы, не отличающееся от полученного ранее.