Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EKh / конспект ММ / Конспект ММ 4к.doc
Скачиваний:
25
Добавлен:
20.02.2016
Размер:
1.45 Mб
Скачать

2.2.1. Загальні характеристики інформації.

В кібернетичних системах здійснюються процеси, які можна віднести до трьох категорій – матеріальні (наприклад, хімічні перетворення в технологічній послідовності операцій), енергетичні (на здійснення будь-яких процесів потрібно витрачати енергію) та інформаційні (обмін інформацією з системою управління). Таким чином, інформація є невід’ємним елементом функціонування управляємих систем, і тому потрібно розуміти її характеристики, орієнтуватись в тому, які процеси здійснюються за її участю і які вимоги до неї ставить система управління.

Інформація відображує таку властивість об’єкта , як різноманітність– чим більш різноманітний об’єкт (кількість вимірюваних параметрів, кількість станів по кожному з параметрів), тим більше слів потрібно використати для його описання і тим більше об’єм інформації.

Інформація, на відміну від матерії та енергії, не підлягає дії закону збереження – вона може утворюватись чи зростати, і може зникати.

Поняття інформації має сенс лише в сполученні з поняттям «управління». Будь-які знання запам’ятовують для того, щоб використати для якоїсь мети, а це і є елемент управління. В неорганічному світі інформація цілеспрямовано не використовується. В найпростіших біологічних організмах вже є механізми використання інформації з навколишнього середовища (наприклад, реакція рослин на зміну температури або освітленості). Найвищого рівня здатність видобувати інформацію розвинена у людини.

Інформація нематеріальна сама по собі, але проявляється завжди в матеріальній формі – на матеріальних носіях.

Носій інформації – це фізичний процес (наприклад, струм в провіднику, звукові чи світлові хвилі) або фізичний об’єкт (папір, дискета, магнітна стрічка).

Сигнал – це сукупність повідомлення та його фізичного носія . Повідомлення – сама інформація, яка міститься на носії.

Мова – система, яка пов’язує носія та повідомлення.. Мова містить чотири головних елементи:

  • знаки (букви, звуки, цифри);

  • слова ( сполучення знаків, які мають смислове значення);

  • словник (повний комплект слів та їх значень);

  • граматика, або синтаксис – правила використання букв та знаків.

Сучасна теорія інформації, основи якої були закладені американським математиком Клодом Шенноном в 1949 р, розглядає і аналізує різні питання інформатики на 3-х рівнях:

  • синтаксичний рівень аналізує внутрішні властивості мови як системи букв (знаків). Параметрами цього рівня є кількість знаків, кількість слів у мові, швидкість передавання інформації через канали зв’язку. Ці проблеми важливі для техніки зв’язку , економічності передавання інформації та роботи обладнання, бо чим більший потік знаків через канал зв’язку, тим більші економічні, енергетичні та матеріальні витрати. Завдання теорій інформатики синтаксичного рівня – оптимізація і економічність передавання інформації, мовні механізми її захисту від пошкодження в каналі зв’язку .

  • семантичний (змістовний) рівень. На цьому рівні розглядаються проблеми відношень між словами та змістом. Головна мета теорій цього рівня – оцінювання кількості інформації в повідомленні.

  • Прагматичний (практичний) рівень - оцінювання інформації з точки зору системи управління, коли важливим є лише зміст інформації та його практичні характеристики – актуальність (важливість і своєчасність), точність, повнота, цінність з точки зору ефективності управління. Математичне моделювання – це робота з інформацією (вхідними даними) на прагматичному рівні.

Вимірювання кількості інформації. Одиниця вимірювання кількості інформації на синтаксичному рівнібіт (від binary digitдвійкова одиниця). Біт – найменша кількість інформації, яка міститься в повідомленні «так» або «ні». Використовують і інші одиниці вимірювання кількості інформації на синтаксичному рівні:

  • 1 Байт = 8 біт. Це довжина кодового слова в перших поколіннях ЕОМ.

  • 1 кілобайт (Кб) = 210 = 1024 байт = 8192 кілобіт ( 1000 байт).

  • 1 мегабайт (Мб)= 106 байт

Частіше в техніці використовують одиницю «байт», яка дорівнює 8 біт.

Розглянемо штучну (машинну) «мову», створену для дискретного періодичного передавання показань термометра з температурним інтервалом 0-128 оС від вимірювального приладу до управляючої системи. Мову оберемо двійкову, тобто вона має лише два знаки (букви)– «0» та «1», які є синонімами виразів звичайної мови «ні» і «так». Кількість слів мови (словник) – 128, якщо сусідні значення температури відрізняються на 1 оС. Потрібно визначити довжину одного слова мови, тобто кількість знаків-букв в слові – порції інформації, яка відображує значення температури в переданому сигналі-слові. Вимога до мови – слова повинні відрізнятись між собою щонайменше однією буквою.

Проілюструвати механізм вирішення цієї задачі можна простим прикладом, показаним на рис.3.1. Припустимо, що потрібно передати значення температури 70 оС з точністю до 1оС, перетворене в форму одного слова мови. Слово складається лише з нулів та одиниць. Завдання полягає в тому, щоб визначити, скільки там має бути знаків, і як вони повинні бути розташовані.

Щоб відповісти на це питання, досить було б задати 7 питань, на які відповідь має складатись лише з двох значень – «так» або «ні», 0 або 1 (рис. 3.1).

Рис.2.2.1. Схема двійкового кодування повідомлення

Розділимо інтервал, в якому може знаходитись відповідь, на дві частини Перше запитання записане на рисунку в нижньому рядку: чи знаходиться температура в лівій половині повного інтервалу 1-128 оС, тобто на ділянці 1-64 оС ? Негативна відповідь дає першу букву слова – «0», і інформацію про те, що вірне значення розташоване в правій половині інтервалу, 65-128 оС. Далі аналогічну процедуру повторюємо для інтервалу 65-128 оС, поділивши його надвоє точкою 96 оС і одержуємо другу букву «1» в слові. Зрозуміло, що в повному інтервалі можливих температур 1-128 оС потрібно задати стільки запитань, скільки разів потрібно виконати ділення надвоє, щоб досягти ширини інтервалу 1оС. Можна бачити, що ділень потрібно 7, а це і означає довжину слова – 7 біт, саме ж слово має вигляд 0111011.

Якщо точність оцінювання температури збільшити вдвічі (відстань між сусідніми значеннями 0.5 оС ), зросте і кількість «слів»- сигналів вдвічі, до 256. Але довжина слова зросте лише на 1 біт і буде дорівнювати 8 біт.

Співвідношення між максимальною кількістю слів мови N, довжиною слова H і кількістю знаків-букв S дає відома формула Хартлі, яку можна записати в ступеневій або логарифмічній формі:

або (2.2.1)

В формулі Хартлі всі значення мають однакову імовірність. Якщо ж урахувати в наведеному прикладі, що окремі значення температури мають різну імовірність, можна суттєво скоротити довжину слова. Наприклад, якщо справа ідеться про температуру навколишнього середовища, то можна відкинути значення температур, які перевищують 60оС, тоді кількість слів N буде меншою. Точно це завдання вирішується за формулою Шеннона, яка враховує імовірність р1, р2, …рN кожного з n=1…N повідомлень

. (2.2.2)

Формула Хартлі є частковим випадком формули Шеннона. Дійсно, якщо всі імовірності мають однакове значення p=1/N, тоді одержуємо:

. (2.2.3)

На рис.2.2.2 наведено графік функції, яка входить в квадратні дужки в формулу Шеннона (2.2.3).

Рис.2.2.2 Залежність кількості інформації, яку несе повідомлення, від його імовірності.

З графіка можна зробити важливий висновок, який робить поняття інформації більш зрозумілим: повідомлення, яке має імовірність «0» ( стан неможливий) або «1» (стан достовірний, як 22=4) – ніякої інформації не несуть, і їх використання для цілей управління не дає ніякої користі. Отже, інформаціяце виключно такі повідомлення, які знімають з об’єкта невизначеність.

В теорії інформації величину «Н», яка визначається за формулами Хартлі або Шеннона, називають «ентропія інформації». Цей термін означає повну кількість потенціального знання, яке до одержання повідомлення ще є «незнанням». Н – апріорна величина, яку можна підрахувати, взагалі не одержуючи повідомлення, вона є лише наслідком властивостей даної мови. А інформація, яка міститься в повідомленні – це та частина невизначеності («незнання»), яку повідомлення знімає з об’єкта. Вона є різницею між початковою та кінцевою ентропією, яка залишилась після одержання повідомлення:

. (2.2.4)

В частковому випадку, коли повідомлення вичерпне, кінцева ентропія дорівнює нулю, а І=Н. Але можлива ситуація, коли повідомлення неповне або неточне, тоді в загальному випадку І Н0 . Наприклад, якщо датчик температури дає підвищену помилку, не 1 оС, як передбачено, а 4оС, НК=2 біт, і кількість одержаної інформації буде І=7-2=5 біт.

Таким чином з наведених прикладів зрозуміло, що кількість циркулюючої в системах управління інформації – це величина, яка залежить від структури самої системи управління. Чим вона складніша (містить більшу кількість параметрів, більшу кількість вимірюваних станів) – тим більший об’єм інформації, але тим точнішими і кращими будуть результати управління.

Соседние файлы в папке конспект ММ