
- •Оглавление
- •Билет 1.
- •Понятия об упругих средах и константах сред
- •2. Редукции наблюденных значений силы тяжести. Физический смысл поправок Фая и Буге.
- •3. Общие представления о физико-геологическом моделировании (определения, последовательность построения фгм, фазы развития фгм при решении геологоразведочных задач.
- •Билет 2.
- •1. Упругие волны, изучаемые сейсмическими методами.
- •2. Физико-геологические условия, благоприятствующие применению гавики и магнитки.
- •3. Характеристика основных способов выбора рационального комплекса геофизических методов в рамках качественно-логического подхода.
- •1. Классификация методов сейсморазведки.
- •2. Качественная и количественная интерпретация данных гравиразведки и магниторазведки. Их содержание и условия применимости.
- •3. Обработка данных сейсморазведки.
- •Билет 4.
- •1. Принципы геометрической сейсмики. Уравнение поля времен.
- •2. Рассчитать гравитационный эффект от бесконечного плоскопараллельного слоя мощностью 1 км с избыточной плотностью 0,05 г/см3.
- •3.Общие принципы интерпретации сейсмических данных
- •Билет 5.
- •1. Сейсмогеологические условия. Полезные волны и волны помехи
- •Рег. Волны помехи при сейсморазведке мов
- •2. Единицы измерения физических величин, находящих применение в гравиразведке и магниторазведке
- •3. Основные методы геологической интерпретации сейсмических данных (прямые поиски, прогнозирование геологического разреза, программы распознавания образов, сейсмостратиграфия).
- •Билет 6.
- •1. Скважинные методы сейсморазведки. Всп.Ск.
- •2. Классификация методов измерения силы тяжести. Какие из них нашли применение в практике разведочной геофизики.
- •3. Кинематическая интерпретация.
- •1.Подготовка входной параметрической информации;
- •Билет 7.
- •1. Метод отраженных волн.(могт 2d, 3d)
- •2. Физическая модель залежи углеводородов Донована-Березкина.
- •3 Динамическая интерпретация.
- •Билет 8.
- •1. Методы преломленных волн.
- •2. Негативные факторы, влияющие на показания гравиметра. Способы борьбы с ними.
- •3. Связь между промыслово-геофизическими и сейсморазведочными данными
- •Билет 9.
- •1. Интерференционные приёмы регистрации волнового поля. Группирование с/п, виды группирования с/п при различных видах с-ки. Расчёт характеристик направленности групп с/п.
- •2. Составляющие силы тяжести. Нормальное распределение силы тяжести на поверхности Земли. Формула Клеро.
- •3. Cвязь мeждyгeoлoгичecкимcтpoeниeмocадoчныxтoлщ идинaмичecкими пapaмeтpaми oтpaжeний
- •Билет 10.
- •1. Скоростные характеристики сейсмических волн, виды скоростей сейсмических волн, используемых в сейсморазведке. Использование скоростных характеристик для решения геологических задач.
- •3. Решение прямых задач сейсморазведки
- •Билет 11.
- •1.Назначение методики огт мов, эффективность методики огт мов. Системы наблюдений, применяемых при огт. Расчёт характеристик направленности огт и их использование для выбора систем наблюдений.
- •2. Способы измерения геомагнитного поля. Принцип свободной прецессии протонов.
- •3. Решение Обратных задач сейсморазведки
- •Билет 12.
- •2. Магнитная индукция и напряженность магнитного поля: понятия, связь между ними, единицы измерения.
- •3. Привязка данных сейсморазведки к геологическому разрезу.
- •Билет 13.
- •1. Системы наблюдений при проведение полевых сейсморазведочных работ. Изображение систем наблюдений на обобщенной плоскости, параметры систем наблюдений.
- •2. Элементы земного магнетизма. Структура геомагнитного поля.
- •3. Двумерное сейсмогеологическое моделирование.
- •Билет 14.
- •1. Статические поправки при обработке данных.
- •2. Классификация веществ по магнитным свойствам. Магнитные свойства горных пород.
- •3. Методика прогнозирования и основные направления поисков ловушек ув сырья в неоком-барремских отложениях Западной Сибири.
- •Билет 15.
- •1. Кинематические поправки при обработке сейсмических данных.
- •2. Методика проведения полевых гравиметрических работ. Оценка качества работ.
- •3. Основые отражающие границы осадочного чехла Западной Сибири
- •Билет 16.
- •1. Вертикальная и латеральная разрещающая способность сейсморазведки
- •2. Метод полумаксимума, как экспресс-метод количественной интерпретации магнитных аномалий.
- •3. Основные уравнения Максвелла для постоянного тока, их характеристика.
- •Билет 17.
- •1. Уравнение годографа мов и мов огт однократных волн.
- •2. Намагниченность: ее природа и носители. Виды намагниченности.
- •3. Основные уравнения Максвелла для переменного тока, их характеристика.
- •Билет 18.
- •1. Цифровое кодирование сейсмической записи, выбор частоты кодирования (теорема Котельникова), частота Найквиста, появление « зеркальных» частот, способ подавления « зеркальных» частот.
- •2. Задачи и методы трансформаций гравимагнитных аномалий.
- •3. Основные характеристики гармонически изменяющегося электромагнитного поля.
- •Билет 19.
- •1. Основы динамического анализа до суммирования (avo,ava- анализ)
- •2. Телеграфные уравнения переменного электромагнитного поля, их трансформации для зон волнового и квазистационарного приближений.
- •Билет 20.
- •1. Основы многоволновой сейсморазведки (3d-3c).
- •2. Уравнение Гельмгольца, комплексная диэлектрическая проницаемость в этих уравнениях.
- •3. Сейсмические комплексы осадочного чехла Западной Сибири
- •Билет 21.
- •1. Способы формирования динамических глубинных изображений (миграционные преобразования).
- •2. Принципы расчета неустановившихся полей, использование интегрального преобразования Фурье.
- •3. Общие представления о прогнозировании геологического разреза (цели и задачи, принципиальная схема комплексирования гис-сейсморазведка, основные подходы и методики пгр)
- •Традиционный подход к пгр
- •Нетрадиционный подход к пгр
- •Билет 22.
- •1. Продольно-непродольное профилирование. Широкий профиль. Продольно-поперечное профилирование.
- •2. Гармонически изменяющиеся поля, способы возбуждения, их структура.
- •3. Общие принципы сейсмостратиграфии.
- •Билет 23.
- •1. Синтез площадных систем наблюдений.
- •2. Электромагнитные свойства горных пород, их математическая связь с напряженностями электрического и магнитного поля.
- •3. Сейсмические комплексы (ск) осадочного чехла Западной Сибири. (юрские отложения)
- •Билет 24.
- •1. Обработка данных сейсморазведки.
- •2. Неустановившееся электромагнитное поле, его структура, основные характеристики поля.
- •Билет 25.
- •1. Аппаратура для полевых сейсмических исследований 3d.
- •2. Методика и техника работ методом зсдз и зсб.
- •3. Особенности поведения волновых полей и сейсмических характеристик в области залежей углеводородов. Аномалии типа залежь (атз).
- •Билет 26.
- •1. Интерпретация материалов 3Dсейсморазведки.
- •2. Асимптота правой ветви кривой мтз при непроводящем основании (ρn→ ∞).
- •3. Нефтегазоносность неоком-баррем-аптских отложений зс. Основные типы сейсмогеологических моделей ловушек ув.
- •Билет 27.
- •1. Площадные группы сейсмоприемников. Основы интерференционного приема сейсмических волн.
- •2. Асимптота правой ветви кривой мтз при проводящем основании
- •3. Сравнительная характеристика методик интерпретации геофизических данных (прямые поиски, пгр, сейсмостратиграфия)
- •Билет 28.
- •1. Характеристики систем наблюдений (карты кратности, удалений, азимутов).
- •2. Уравнение Лапласа для постоянного электрического поля в случаях изотропной и анизотропной среды, граничные условия на поверхности раздела сред.
- •3. Сейсмогеологические модели неантиклинальных ловушек ув в юрских отложениях зс
- •9.4.2. Cpeднeюpcкий hгk
- •Билет 29.
- •1. Современные системы наблюдений (кирпич, зигзаг, неортогональные, случайные).
- •2. «Парадокс анизотропии» в электроразведке, его сущность и математическая запись.
- •3. Нефтегазоносность неоком-баррем-аптских отложений зс. Основные типы сейсмогеологических моделей ловушек ув.
- •Билет 30.
- •1. Нерегулярные пространственные системы наблюдений.
- •Слалом-профилирование
- •2. Эквивалентность в электроразведке, условия эквивалентности для разрезов типа н и а и разрезов к и q.
- •3. Общие принципы комплексирования методов разведочной геофизики при прогнозировании, поисках и разведке залежей ув.
Билет 30.
1. Нерегулярные пространственные системы наблюдений.
Наиболее приемлемыми с точки зрения экологических требований являются нерегулярные системы. Они позволяют прокладывать профиль там, где это возможно, не взирая на геометрию получаемого профиля.
Слалом-профилирование
Это одна из первых методик нерегулярной сейсморазведки. Оно было создано для получения информации в районах со сложными поверхностными условиями. Для обработки таких систем было создано специальное мат обеспечение, позволяющее получить суперсуммарный вертикальный временной разрез вдоль оси профиля. При этом суммирование проводится по всей поперечной базе "облака" средних точек. Данный алгоритм определяет ограничения на геометрию криволинейного профиля. Отражающие границы должны оставаться плоскими в пределах поперечной базы поля точек отражения. Иными словами, ширина "облака" точек отражения ограничивается и ограничивается максимальный угол излома профиля для каждой конкретной площади.
Тотальная сейсморазведка
Тотальная сейсморазведка создана для применения в районах со сложными поверхностными условиями (пересеченная местность, густонаселенные районы, сельскохозяйственные угодья). Методика включает в себя сеть профилей произвольной конфигурации, а также - набор дополнительных непродольных пунктов возбуждения. Целью работ является получение относительно плотной сети точек отражения по площади. Отличительной особенностью является оригинальная технология обработки материалов, позволяющая определить пространственные кинематические и скоростные характеристики среды. Недостатки: необходимость при обработке формирования больших суперпозиций трасс (до сотен метров) для устойчивой работы алгоритмов, что ведет к уменьшению разрешающей способности метода по латерали.
Замкнутое кольцевое криволинейное профилирование
На базе криволинейного профилирования создана технология обработки материалов, снимающая ограничения на размеры "облака" средних точек отражения. Следствием явилась разработка методики замкнутого (кольцевого) криволинейного профилирования МОВ. Сущностью методики является реализация контроля параметров волнового поля по критерию замкнутости. При этом избавляются от проблемы невязки профилей на крестах, краевых эффектов и получения равномерной сети точек отражения по площади. Эффективной также методика является для целей исследования околоскважинного пространства.
Диаметр кольца выбирается исходя из геологической задачи и поверхностных условий. При наличии необходимой канальности регистрирующей аппаратуры удобно проводить регистрацию сразу по всему периметру замкнутого профиля с перемещением только точки возбуждения.
Правильность геометрии кольца не является обязательным условием. В зависимости от соотношения длины расстановки и радиуса кольцевого профиля будет реализовываться либо полное покрытие участка внутри профиля точками отражения (для этого нужно, чтобы длина расстановки была больше или равна половине периметра кольца), либо частичное. В случае меньшего соотношения длины расстановки и периметра кольцевого профиля получается полоса точек отражения вдоль криволинейной оси профиля, которая может быть использована как для получения вертикального временного разреза ОГТ, так и для оценки пространственных углов наклона отражающих границ. Для этих целей используется специальное математическое обеспечение. Эффективность данной методики с точки зрения экологической чистоты связана с произвольностью положения линии профиля. Для оптимизации работ в полевых условиях были разработаны сопряженные кольцевые системы, позволяющие проводить непрерывный обход всей площади.
Недостаток: очень плохие спектры удалений в центре кольца, что усложняет скоростной анализ. Основные проблемы возникают на этапе обработки, где необходима более тщательная коррекция статических, кинематических и динамических поправок.
Замкнутое полигональное криволинейное профилирование
Задача получения новой детальной информации с использованием старой сети профилей (просек). В этом случае предлагается использовать принципы кольцевого криволинейного профилирования на прямоугольных полигонах. Для получения детальной пространственной информации следует иметь расстановку длиной в половину периметра полигона. Для непрерывной обработки сети полигонов разработана специальная методика "обхода". Методика показала свою высокую эффективность. Пока методика применяется лишь при благоприятных глубинных сейсмогеологических условиях. Для решения более сложных геологических задач необходимо совершенствование математического аппарата обработки материалов.
Описанные выше нерегулярные (гибкие) системы наблюдений должны быть использованы для постановки экологически чистых сейсмических исследований. Причем может использоваться стандартная сейсмическая регистрирующая аппаратура.