Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книга ТЕД.doc
Скачиваний:
621
Добавлен:
10.02.2016
Размер:
8.81 Mб
Скачать

1.3. Материальные уравнения. Классификация сред

Электромагнитные взаимодействия между зарядами и токами зависят от свойств среды. Свойства среды характеризуются тремя электродинамическими (макроскопическими) параметрами: Среды принято делить на однородные и неоднородные, линейные и нелинейные, изотропные и анизатропные.

Среда однородна, если ее электродинамические параметры не зависят от координат. Если хотя бы один из параметров меняется от точки к точке, то среда неоднородна.

Среда линейна, если ее электродинамические параметры не зависят от величин векторов электромагнитного поля. Если хотя бы один из параметров зависит от величин векторов электромагнитного поля, то среда нелинейна.

Среда изотропна, если ее электродинамические параметры не зависят от направления векторов электромагнитного поля. Если хотя бы один из параметров зависит от направления векторов электромагнитного поля, то среда анизатропна.

Электродинамические параметры в каждой точке поля входят в материальные уравнения, связывающие векторы электромагнитного поля. Для случая линейной изотропной среды материальные уравнения имеют следующий вид:

, (1.9)

, (1.10)

. (1.11)

Множитель σ в последнем уравнении имеет размерность См/м и называется удельной проводимостью среды. При σ = const это уравнение выражает закон Ома в дифференциальной форме.

Электродинамические параметры большинства сред в обычных условиях – скалярные и постоянные величины. При этом соответствующие пары векторов коллинеарные, а их модули связаны линейной зависимостью. При возрастании напряженности поля линейная зависимость нарушается, параметры среды изменяются при изменении напряженности поля, среда становится нелинейной.

В анизотропных средах соотношения между парами векторов зависят от их ориентации. В общем случае эти векторы непараллельные. Для описания свойств анизотропных сред применяют несимметричные тензоры ║εа║,║μа║,║σ║.

Как правило, нелинейность или анизотропия проявляется лишь в одном из материальных соотношений. Соответственно различают нелинейные диэлектрики, анизотропные магнетики и т.п.

В дальнейшем, если не сделано специальных оговорок, среды считаются линейными однородными и изотропными.

1.4. Уравнения Максвелла в дифференциальной и интегральной

формах

Макроскопическая теория электромагнетизма основывается на уравнениях Максвелла, которые связывают между собой источники и векторы электромагнитного поля.

Основные законы электричества и магнетизма, кроме закона Фарадея, были получены при наблюдении стационарных полей. С логической точки зрения, априори не следует, что они остаются неизменными для полей, зависящих от времени. Поэтому так велика заслуга Максвелла, который обобщил полученные до него экспериментальные закономерности на случай произвольного электромагнитного поля в произвольной среде, введя всего лишь одно дополнительное слагаемое в закон, открытый Ампером.

Система уравнений электромагнитного поля была постулирована Максвеллом, т.е. введена в теорию аксиоматически. В любой физической теории аксиомами считаются те фундаментальные соотношения, из которых путем лишь математических преобразований выводятся остальные свойства изучаемых объектов. Необъятное количество экспериментальных фактов, полученных после введения этих уравнений, не оставляют сомнений в их правильности, так как выводы электромагнитной теории находятся в неизменном соответствии с результатами опыта и практической деятельности.

Различают уравнения Максвелла в дифференциальной и интегральной формах (см. табл. 1.1). Уравнения Максвелла в дифференциальной форме уста­навливают связь между векторами и источниками электромагнитного поля в каждой точке пространства, а уравнения в интегральной форме связывают меж­ду собой источники и интегральные характеристики (потоки, циркуляции) электромагнитных полей. Переход от одной формы уравнений к другой осуществ­ляется простыми математическими преобразованиями (см. Приложение А).

Таблица 1.1 – Уравнения Максвелла

Уравнения Максвелла в дифференциальной форме

Уравнения Максвелла в интегральной форме

Первое уравнение Максвелла –

закон полного тока Ампера-Максвелла

(I)

Второе уравнение Максвелла – закон электромагнитной индукции Фарадея-Максвелла

(II)

Третье уравнение Максвелла – обобщенная теорема Гаусса

(III)

Четвертое уравнение Максвелла –

закон непрерывности магнитного потока

(IV)

Поясним физический смысл уравнений Максвелла.

Закон полного тока. Из закона пол­ного тока в дифференциальной форме сле­дует, что вихри магнитного поля возникают только в тех точках пространст­ва, где имеется либо объемная плотность тока про­водимости , либо перемен­ное во вре­мени электрическое поле. Мож­но сказать иначе. Перемен­ное во времени электрическое поле возбуждает также, как и переменный ток проводимости, переменное во времени магнитное вихревое поле.

Из закона полного тока в интегральной форме следует, что цирку­ляция вектора напряженности магнитного поля по любому замкнутому контуру L равна полному току, протекающему через любую поверхность, опирающуюся на этот контур (рис. 1.1).

При этом полным током называется величина, равная:

. (1.12)

Соответственно объемная плотность полного тока равна:

. (1.13)

Величину, определяемую соотношением

, (1.14)

принято называть объемной плотностью тока смещения. Из определения вектора следует, что плотность тока смещения определяется движением (смещением) электрических зарядов, связанных в молекулах вещества, и изменением электрического поля в вакууме. Отметим, что закон полного тока был предложен Максвеллом путем обобщения закона Ампера (добавления в правую часть закона Ампера тока смещения) на случай полей, меняющихся во времени по произвольному закону.

Закон электромагнитной индукции. Из закона электромагнитной индук­ции в дифференциальной форме следует, что вихри электрического поля воз­никают в тех точках пространства, где имеется переменное во времени магнит­ное поле . Другими словами, переменное во времени магнитное поле возбуждает переменное во времени вихревое электрическое поле.

Из закона электромагнитной индукции в интегральной форме следует, что циркуляция вектора по любому замкнутому контуруL равна взятой с обратным знаком скорости изменения магнитного потока, пронизывающего любую поверхность S, опирающуюся на этот контур.

Следует отметить существенную разницу в использовании одного и того же термина контур. В формулировке Фарадея контур – это замкнутая цепь, составленная из проводников. Максвелл обобщил закон Фарадея, понимая под контуром замкнутую линию, произвольно расположенную в пространстве.

Теорема Гаусса. Cоотношение (III) в интегральной форме известно из электростатики, как теорема Гаусса, и обобщено Максвеллом на случай полей, произвольно зависящих от времени. Оно устанавливает, что электрические заряды служат истоками и стоками электрического поля; линии вектора электрической индукции выходят из областей, содержащих положительные заряды и входят в области, где находятся отрицательные заряды.

Из теоремы Гаусса в дифференциальной форме следует, что силовые линии вектора электрического смещения начинаются (заканчиваются) в тех точках пространства, где имеется электрический заряд с объемной плотностью ρ. Точки, в которых силовые линии начинаются (ρ  0), называются истоками вектора электрического смещения, а точки, в которых силовые линии заканчиваются (ρ  0), называются стоками того же вектора.

Из теоремы Гаусса в интегральной форме следует, что поток вектора через любую замкнутую поверхностьS равен алгебраической сумме зарядов, заключенных в объеме V, ограниченном этой поверхностью.

Закон непрерывности магнитного потока. Из четвертого уравнения Максвелла в дифференциальной форме следует, что магнитное поле не имеет ни истоков, ни стоков. Отсюда следует, что силовые линии вектора магнитной индукции всегда замкнуты (поле соленоидально).

Из четвертого уравнения Максвелла в интегральной форме следует, что поток вектора сквозь любую замкнутую поверхность S всегда равен нулю.

Из уравнений Максвелла можно сделать вывод, что только в случае статических полей, создаваемых неподвижными и неизменными во времени зарядами, электрические и магнитные поля являются независимыми.

В общем случае, когда заряды меняются во времени, электрические и магнитные поля связаны между собой: наличие переменного электрического поля невозможно без существования переменного вихревого магнитного поля и, наоборот.

При решении конкретных задач электродинамики в уравнения Максвелла вводятся сторонние заряды и сторонние токи, которые являются первопричиной возбуждения электромагнитного поля. Задание сторонних источников производится добавлением в правые части уравнений (I) и (III) соответствующих слагаемых. При этом уравнения Максвелла в дифференциальной форме принимают следующий вид:

, (1.15)

, (1.16)

, (1.17)

. (1.18)

С формальной математической точки зрения уравнения (1.15) – (1.18) являются системой векторно-дифференциальных уравнений для определения векторов электромагнитного поля по заданным и. Система уравнений (1.15) – (1.18) совместно с материальными уравнениями (1.9) – (1.11) является математически полной и позволяет ставить и решать конкретные задачи электродинамики. Используя совместно материальные уравнения и уравнения (1.15) – (1.18), можно получить векторные дифференциальные уравнения, которым удовлетворяют каждый из векторови. В случае однородной изотропной среды без потерь эти уравнения для декартовой системы координат имеют следующий вид:

, (1.19)

, (1.20)

где – оператор Лапласа, который в декартовой системе координат имеет вид:

.