
- •Цифровые эвм
- •§1.2 Структуры типичных микроЭвм
- •§1.3 Архитектура микро- и мини – эвм
- •§1.4 Архитектура эвм
- •§1.5 Ортогональность архитектуры микропроцессоров.
- •§2. Микропрограммные устройства управления §2.1 Структура микропрограммных устройств
- •§2.2 Способы записи микропрограмм
- •1) Гса должна содержать одну начальную, одну конечную вершину и конечное множество операторных и условных вершин;
- •2) Каждый выход гса соединяется только с одним входом;
- •3) Входы и выходы различных вершин соединяются дугами, направленными от выхода к входу;
- •4) Для любой вершины гса существует, по крайней мере, один путь из этой вершины к конечной вершине, проходящей через операторные и условные вершины в направлении соединяющих их дуг;
- •§2.3 Микропрограммный принцип управления операциями
- •1) Определение формата операционной части мк;
- •2) Синтез формата адресной части мк;
- •3) Синтез структурной схемы автомата;
- •4) Построение карты программирования пзу или плм.
- •§2.4 Синтез мпа с использованием “жёсткой” логики
- •2. Прибавить к содержимому сумматора первое частичное произведение.
- •3. К содержимому сумматора прибавить сдвинутое на разряд вправо второе частичное произведение.
- •4. Далее аналогично прибавить третье, четвертое и последующие частичные произведения.
- •§2.5 Выбор схемы операционного устройства
- •1) Два регистра (регистр множимого rg2 и регистр множителя rg1);
- •2) Сумматор (5м);
- •3) Счетчик (ст) для подсчета числа суммирований. На рис. 2.9 показаны обозначения этих узлов на схемах.
- •§3. Запоминающие устройства §3.1 Запоминающие устройства и их назначение
- •§3.2Классификация и основные характеристики полупроводниковых зу
- •§3.3 Статические озу
- •§3.4 Динамические озу
- •§3.5 Память на пзс
- •§3.7 Функциональные схемы озу
- •§3.8 Функциональные схемы пзу и ппзу
- •§3.9 Организация многокристальной памяти
- •§3.10 Программирование пзу
- •§3.11 Программируемые логические матрицы
- •§4. Процессоры и микропроцессоры §4.1Классификация микропроцессоров
- •§5.Сравнение архитектур микропроцессоров
- •§5.1 Архитектуры микропроцессоров.
- •§5.2 Ортогональность архитектуры микропроцессоров.
- •§5.3 Основные принципы построения устройств обработки цифровой информации
- •Существует два основных типа управляющих автоматов:
- •1) Управляющий автомат с жесткой логикой.
- •2) Управляющий автомат с хранимой в памяти логикой.
- •§5.4 Принципы организации арифметико – логических устройств.
- •§5.5 Классификация алу
- •1) Для чисел с фиксированной запятой;
- •2) Для чисел с плавающей запятой;
- •3) Для десятичных чисел.
- •§5.6 Структура и формат команд. Кодирование команд.
- •1) Команды арифметических операций для чисел с фиксированной и плавающей запятой;
- •§6.Проектирование микро - эвм
- •§6.1.Функциональные блоки и организация управления в микро - эвм §6.1.1Общие сведения
- •§6.1.2. Структура операционного устройства
- •§6.1.3. Структура устройства управления
- •1. Безусловный переход из адреса Ai по адресу Aj определенному одним из способов адресации (рис. 6.7,а).
- •Однокристальные эвм §7.Описание микроконтроллеров 8051, 8052 и 80c51 §7.1 Вступление
- •§7.2Специальные функциональные регистры
- •§7.3 Структура и работа портов
- •§7.3.1 Конфигурации ввода-вывода
- •§7.3.2 Запись в порт
- •§7.3.3 Загрузка и согласование портов.
- •§7.3.4 Особенность чтения-модификации-записи
- •§7.4.Доступ к внешней памяти
- •§7.5 Таймер/счетчик
- •Таймер 0 и Таймер 1
- •Режим 0 (mode 0)
- •М1 м0 Режим
- •§7.5 Последовательный интерфейс
- •§7.5.1 Многопроцессорные связи
- •§7.5.2 Управляющий регистр последовательного порта
- •§7.5.4 Скорость приема/передачи
- •§7.5.5Использование таймера 1 для задания скорости приема/передачи
- •Дополнительные сведения о режиме 0
- •Дополнительные сведения о режиме 1
- •Дополнительные сведения о режимах 2 и 3
- •Прерывания
- •§7.6 Структура уровней приоритета
- •Перехват прерываний
- •Внешние прерывания
- •Время отклика
- •Одношаговые операции
- •Версии микросхем с сппзу
- •Две схемы блокировки программной памяти
- •Защита пзу
- •Внутричиповые осцилляторы
- •Осцилляторах mcs-51
- •Внутренняя синхронизация
- •§8.1.Введение
- •§8.2. Обзор характеристик
- •Отличия pic16c84 от pic16c5x
- •Mаркировка при заказе
- •Разводка ножек
- •Прямая адресация.
- •Проблемы с таймером
- •Регистр статуса
- •Программные флаги статуса
- •Аппаратные флаги статуса
- •Организация встроенного пзу
- •Pc и адресация пзу
- •Стек и возвраты из подпрограмм
- •Данные в eeprom
- •Управление eeprom
- •Организация прерываний
- •Регистр запросов и масок
- •Внешнее прерывание
- •Прерывание от rtcc
- •Прерывание от порта rb
- •Прерывание от eeprom
- •Обзор регистров/портов
- •2) Прочитать порт в. Это завершит состояние сравнения.
- •Проблемы с портами
- •Обзор команд и обозначения
- •Условия сброса
- •Алгоритм сброса при вал. Питания
- •Watch Dog таймер
- •Типы генераторов.
- •Генератор на кварцах
- •Rc генератор.
- •Внешнее возбуждение. Регистр option
- •Подключения делителя частоты
- •1. Movlw b`xx0x0xxx` ;выбрать внутреннюю синхронизацию и новое
- •Конфигурационное слово
- •01 Xt генератор
- •10 Hs генератор
- •11 Rc генератор
- •Индивидуальная метка
- •Защита программ от считывания
- •1) Запрограммируйте и проверьте работу исправного кристалла.
- •2) Установите защиту кода программы и считайте содержимое программной памяти в файл-эталон.
- •3) Проверяйте любой защищенный кристалл путем сравнения его программной памяти с содержимым этого эталона.
- •Режим пониженного энергопотребления.
- •1. Внешний сброс - импульс низкого уровня на ножке /mclr.
- •2. Сброс при срабатывании wdt(если он разрешен)
- •3. Прерывания. (Прерывание с ножки int, прерывание при изменении порта b, прерывание при завершении записи данных eeprom).
- •Максимальные значения электрических параметров
- •1. Полная рассеиваемая мощность не должна превышать 800 мВт для каждого корпуса. Рассеиваемая мощность вычисляется по следующей формуле:
- •Скоростные характеристики:
- •§8.3. Что такое pic ?....
- •Hабор регистров pic
- •Регистр косвенной адресации ind0
- •Регистры общего назначения
- •Сторожевой таймер wdt
- •Тактовый геhератор
- •Xt кварцевый резонатор
- •От теории - к практике...
- •Initb equ b'00000000' ; ; Рабочая секция ; ; начало исполняемого кода
- •Пример программы
- •Ассемблироваhие
- •Программироваhие
- •Набор команд pic
- •Incf scratch,0 ;увеличить scratch на 1
- •Iorwf dataport,1 ;установить биты в поpте b по маске w
- •Iorlw 09h ;установить 0-й и 3-й биты Светодиоды покажут 00011001.
- •Xorlw b'11111111' ;пpоинвеpтиpовать w Светодиоды покажут 11011111.
- •Comf scratch,0 ;инвеpтиpовать scratch Светодиоды покажут 10101010.
- •Специальные команды
- •§9.Введение вAdsp §9.1. Обзор
- •§9.2. Функциональные устройства
- •§9.3. Интерфейс системы и памяти
- •§9.4. Набор команд
- •§9.5. Рабочие характеристики цифровых сигнальных процессоров
- •§9.6. Базовая архитектура
- •§9.7. Вычислительные устройства
- •§9.8. Генераторы адреса и программный автомат
- •§9.9. Шины
- •§9.10. Другие устройства на кристалле
- •§9.11. Последовательные порты
- •§9.12. Таймер
- •§9.13. Порт интерфейса хост-машины (adsp-2111, adsp-2171, adsp-21msp5x)
- •§9.14. Порты прямого доступа к памяти (adsp-2181)
- •§9.15. Аналоговый интерфейс
- •§9.16. Система программно – аппаратных средств отладки процессоров семействаAdsp - 2100
- •§9.17. Генераторы адреса и программный автомат
- •§10Вычислительные устройства §10.1. Обзор
- •Последовательности двоичных символов
- •Беззнаковый формат
- •Знаковые числа в дополнительном коде
- •§10.2. Арифметико – логическое устройство (алу)
- •Блок-схема алу
- •Стандартные функции
- •Регистры ввода/вывода алу
- •Возможность операций с повышенной точностью
- •Режим насыщения алу
- •Режим фиксации переполнения алу
- •Деление
- •§10.3. Умножитель – накопитель (умножитель)
- •Арифметические операции умножителя
- •Арифметические операции устройства сдвига
- •Операции умножителя-накопителя
- •X*y Умножение операндов х и y
- •Форматы ввода данных
- •Регистры ввода/вывода умножителя-накопителя
- •§10.4. Устройство циклического сдвига
- •Денормализация
- •Нормализация
- •§11. Управление программой
- •§11.1. Обзор
- •§11.2. Программный автомат
- •§11.3 Команды управления программой
- •§11.4. Контроллер прерываний
- •§11.5. Условные команды
- •§12. Дополнительное аппаратное обеспечение §12.1. Обзор
- •§12.2. Начальная загрузка через хост – машину с использованием процедур запроса и предоставления шины
- •1) Для перезапуска процессора семейства adsp-2100 pb8 устанавливается низким.
- •§12.4. Сопряжение последовательного порта с цап
- •§12.5. Сопряжение последовательного порта с ацп
- •§12.6. Сопряжение последовательного порта с другим последовательным портом
- •§12.7. Сопряжение микрокомпьютера 80с51 с портом интерфейса хост – машины
- •§12.8. Обзор
- •§13. Программное обеспечение §13.1. Процесс отладки системы
- •§14. Система команд мп типа к580ик80
- •§14.1 Способы адресации мп
- •§14.2 Команды мп
- •§14.3 Пояснения к некоторым командам
- •§15. Архитектура микропроцессора z-80
- •§15.1 Назначение выводов
- •§15.2 Логическая организацияZ80
- •Устройство управления.
- •Регистры пользователя (основные регистры).
- •Регистровая пара hl.
- •Набор альтернативных регистров.
- •Арифметико-логическое устройство (алу).
- •§15.3 Система команд микропроцессора z – 80. Команды и данные.
- •3. Двухбайтовый адрес (addv).
- •4. Однобайтовая константа смещения.
- •Группа команд
- •Группа 1. Команда «нет операции»
- •Группа 2. Команды загрузки регистра константами.
- •Группа 4.Команды загрузки регистров из памяти.
- •Группа 5.Команды записи в память содержимого регистра или константы.
- •Группа 6.Команды сложения.
- •Группа 7.Команды вычитания.
- •Группа 8.Команды сравнения.
- •Подгруппа b. Команда or.
- •Подгруппа c. Команда xor.
- •Группа 11. Команда стека.
- •2.Адрес addr затем записывается в счетчик команд, и выполняется программа.
- •3.По команде ret осуществляется возврат из программы.
- •§16.Микросхема 80130
- •§17.Микросхема 80186
- •§18.Микросхема 80286
- •Verr — Проверить доступ по считыванию
- •Verw — Проверить доступ по записи
- •Определение состояния цикла шины процессора 80286
- •§19.Микропрцессоры серииiX86 фирмы intel Выбор в программе на Ассемблере типа процессора
- •§19.1. Процессоры 80186 и 80188
- •Новые инструкции
- •Инструкции pusha и popa
- •Инструкции enter и leave
- •Инструкция bound
- •Инструкции ins и outs
- •Расширенные версии инструкций процессора 8086
- •Imul si,10 это просто сокращенная форма инструкции:
- •§19.2. Процессор 80286
- •§19.3. Процессор 80386
- •Новые типы сегментов
- •Новые регистры
- •Новые сегментные регистры
- •Новые режимы адресации
- •Процессор 80386, новые инструкции
- •Проверка битов
- •Просмотр битов
- •Преобразование данных типа dword или qword
- •Сдвиг нескольких слов
- •Условная установка битов
- •Загрузка регистров ss, fs и gs
- •Расширенные инструкции
- •Специальные версии инструкции mov
- •Новые версии инструкций loop и jcxz
- •Новые версии строковых инструкций
- •Инструкция iretd
- •Инструкции pushfd и popfd
- •Инструкции pushad и popad
- •Новые версии инструкции imul
- •Imul ebp,ecx,100000000h а следующая инструкция умножает ecx на ebx, записывая результат в edx:eax:
- •Технический обзор Новое поколение процессоров фирмы intel
- •Pentium процессор. Технические нововведения.
- •Архитектура Pentium процессора
- •Суперскалярная архитектура.
- •Блок предсказания правильного адреса перехода.
- •Высокопроизводительный блок вычислений с плавающей запятой.
- •Расширенная 64-битовая шина данных.
- •Средства разделения памяти на страницы.
- •Определение ошибок и функциональная избыточность.
- •Управление производительностью.
- •§22.Введение в команды mmx.
- •§22.1. Регистры
- •§22.2. Префиксы
- •§22.3.Распаровка (paring).
- •§22.4. Типы данных
- •§22.5. Краткое описание команд
- •§23.Логическая структура микропроцессорной системы на основе комплекта бис секционного микропроцессора §23.1. Комплект бис секционного микропроцессора.
- •§23.2. Бис микропрограммного управления на основе программируемой логической матрицы (плм).
- •§23.3. Комплект бис для построения электронной системы.
- •§24. Обзор секционируемых мпк бис §24.1. Микропроцессорный комплект серии кр1802
- •§24.1.1. Восьмиразрядная микропроцессорная секция (мс) кр1802вс1.
- •§24.1.2. Двухадресная память общего назначения кр1802ир1.
- •§24.1.3. Шестнадцатиразрядный арифметический расширитель кр1802вр1.
- •§24.1.4. Схема обмена информацией (ои) кр1802вв1.
- •§24.1.5. Бис интерфейса (бис и) кр1802вв2.
- •§24.1.6. Сумматор (см) к1802им1.
- •§24.1.7. Км1802врз—умножитель двух 8-разрядных чисел.
- •§24.1.8. Км1802вр4—умножитель двух 12-разрядных чисел.
- •§24.1.9. Км1802вр5—умножитель двух 16-разрядных чисел.
- •§24.2. Микропроцессорный комплект серии к1804
- •§24.2.1. Центральные процессорные элементы к1804вс1 и к1804вс2
- •§24.3. Микропроцессорный комплект серии к587 §24.3.1. Арифметическое устройство к587ик2.
- •§24.3.2. Управляющая память к587рп1.
- •§24.3.3. Устройство обмена информации к587ик1.
- •§24.3.4. Арифметический расширитель к587икз.
- •§24.3.5. Архитектурные особенности построения управляющей микро-эвм на базе мпк серии к587
Технический обзор Новое поколение процессоров фирмы intel
Объединяя более чем 3.1 миллион транзисторов на одной кремниевой подложке, 32-разрядный Pentium процессор характеризуется высокой производительностью с тактовой частотой 60 и 66 МГц. Его суперскалярная архитектура использует усовершенствованные способы проектирования, которые позволяют выполнять более чем одну команду за один период тактовой частоты, в результате чего Pentium в состоянии выполнять огромное количество PC-совместимого программного обеспечения быстрее, чем любой другой микропроцессор. Кроме существующих наработок программного обеспечения, высокопроизводительный арифметический блок с плавающей запятой Pentium процессор обеспечивает увеличение вычислительной мощности до необходимой для использования недоступных ранее технических и научных приложений, первоначально предназначенных для платформ рабочих станций. Также как локальные и глобальные сети продолжают вытеснять устаревшие иерархические сети, управляемые большими ЭВМ, преимущества мультипроцессорности и гибкость операционной системы Pentium процессора - идеал для хост-компьютера для современных приложений клиент-серверов, применяемых в промышленности.
Поскольку Pentium процессор способен достигать уровня производительности равного или более высокого, чем современные рабочие станции высокого уровня, он обладает преимуществами, которых лишены обычные рабочие станции: полная совместимость с более, чем 50 000 программных приложений со стоимостью миллиарды долларов, которые были написаны под архитектуру фирмы INTEL. В дополнение, Pentium процессор позволяет использовать все основные операционные системы, которые доступны современным настольным персональным компьютерам, рабочим станциям и серверам, включая UNIX, Windows-NT, OS/2, Solaris и NEXTstep.
Pentium процессор. Технические нововведения.
Многочисленные нововведения - характерная особенность Pentium процессора в виде уникального сочетания высокой производительности, совместимости, интеграции данных и наращиваемости. Это включает:
Суперскалярную архитектуру;
Раздельное кэширование программного кода и данных;
Блок предсказания правильного адреса перехода;
Высокопроизводительный блок вычислений с плавающей запятой;
Расширенную 64-битовую шину данных;
Поддержку многопроцессорного режима работы;
Средства задания размера страницы памяти;
Средства обнаружения ошибок и функциональной избыточности;
Управление производительностью;
Наращиваемость с помощью Intel OverDrive процессора.
Архитектура Pentium процессора
1 - 64-битовый шинный интерфейс;
2 - Средства кэширования программного кода;
3 - Буферы выборки с упреждением;
4 - 32-битовый целочисленный блок АЛУ;
5 - 32-битовый целочисленный блок АЛУ;
6 - Набор регистров;
7 - Средства кэширования данных;
8 - Блок предсказания правильного адреса перехода;
9 - Блок конвейерных вычислений с плавающей запятой.
Суперскалярная архитектура.
Суперскалярная архитектура Pentium процессора представляет собой совместимую только с INTEL двухконвейерную индустриальную архитектуру, позволяющую процессору достигать новых уровней производительности посредством выполнения более, чем одной команды за один период тактовой частоты. Термин "суперскалярная" обозначает микропроцессорную архитектуру, которая содержит более одного вычислительного блока. Эти вычислительные блоки, или конвейеры, являются узлами, где происходят все основные процессы обработки данных и команд.
Появление суперскалярной архитектуры Pentium процессора представляет собой естественное развитие предыдущего семейства процессоров с 32-битовой архитектурой фирмы INTEL. Например, процессор Intel486 способен выполнять несколько своих команд за один период тактовой частоты, однако предыдущие семейства процессоров фирмы INTEL требовали множество циклов тактовой частоты для выполнения одной команды.
Возможность выполнять множество команд за один период тактовой частоты существует благодаря тому, что Pentium процессор имеет два конвейера, которые могут выполнять две инструкции одновременно. Так же, как и Intel486 с одним конвейером, двойной конвейер Pentium процессора выполняет простую команду за пять этапов: предварительная подготовка, первое декодирование (декодирование команды), второе декодирование (генерация адреса), выполнение и обратная выгрузка. Это позволяет нескольким командам находиться в различных стадиях выполнения, увеличивая тем самым вычислительную производительность. Каждый конвейер имеет свое арифметическо - логическое устройство (ALU), совокупность устройств генерации адреса и интерфейс кэширования данных. Так же как и процессор Intel486, Pentium процессор использует аппаратное выполнение команд, заменяющее множество микрокоманд, используемых в предыдущих семействах микропроцессоров. Эти инструкции включают загрузки, запоминания и простые операции АЛУ, которые могут выполняться аппаратными средствами процессора, без использования микрокода. Это повышает производительность без затрагивания совместимости. В случае выполнения более сложных команд, для дополнительного ускорения производительности выполнения расширенного микрокода Pentium процессора для выполнения команд используются оба конвейера суперскалярной архитектуры.
В результате этих архитектурных нововведений, по сравнению с предыдущими микропроцессорами, значительно большее количество команд может быть выполнено за одно и то же время.
Раздельное кэширование программного кода и данных.
Другое важнейшее революционное усовершенствование, реализованное в Pentium процессоре, это введение раздельного кэширования. Кэширование увеличивает производительность посредством активизации места временного хранения для часто используемого программного кода и данных, получаемых из быстрой памяти, заменяя по возможности обращение ко внешней системной памяти для некоторых команд. Процессор Intel486, например, содержит один 8-KB блок встроенной кэш-памяти, используемой одновременно для кэширования программного кода и данных.
Проектировщики фирмы INTEL обошли это ограничение использованием дополнительного контура, выполненного на 3.1 миллионах транзисторов Pentium процессора (для сравнения, Intel486 содержит 1.2 миллиона транзисторов) создающих раздельное внутреннее кэширование программного кода и данных. Это улучшает производительность посредством исключения конфликтов на шине и делает двойное кэширование доступным чаще, чем это было возможно ранее. Например, во время фазы предварительной подготовки, используется код команды, полученный из кэша команд. В случае наличия одного блока кэш-памяти, возможен конфликт между процессом предварительной подготовки команды и доступом к данным. Выполнение раздельного кэширования для команд и данных исключает такие конфликты, давая возможность обеим командам выполняться одновременно. Кэш-память программного кода и данных Pentium процессора содержит по 8 KB информации каждая, и каждая организована как набор двухканального ассоциативного кэша - предназначенная для записи только предварительно просмотренного специфицированного 32-байтного сегмента, причем быстрее, чем внешний кэш. Все эти особенности расширения производительности потребовали использования 64-битовой внутренней шины данных, которая обеспечивает возможность двойного кэширования и суперскалярной конвейерной обработки одновременно с загрузкой следующих данных. Кэш данных имеет два интерфейса, по одному для каждого из конвейеров, что позволяет ему обеспечивать данными две отдельные инструкции в течение одного машинного цикла. После того, как данные достаются из кэша, они записываются в главную память в режиме обратной записи. Такая техника кэширования дает лучшую производительность, чем простое кэширование с непосредственной записью, при котором процессор записывает данные одновременно в кэш и основную память. Тем не менее, Pentium процессор способен динамически конфигурироваться для поддержки кэширования с непосредственной записью.
Таким образом, кэширование данных использует два различных великолепных решения: кэш с обратной записью и алгоритм, названный MESI (модификация, исключение, распределение, освобождение) протокол. Кэш с обратной записью позволяет записывать в кэш без обращения к основной памяти в отличие от используемого до этого непосредственного простого кэширования. Эти решения увеличивают производительность посредством использования преобразованной шины и предупредительного исключения самого узкого места в системе. В свою очередь MESI-протокол позволяет данным в кэш-памяти и внешней памяти совпадать - великолепное решение в усовершенствованных мультипроцессорных системах, где различные процессоры могут использовать для работы одни и те же данные.
Рекомендуемый объем общей кэш-памяти для настольных систем, основанных на Pentium процессоре, равен 128-256 K, а для серверов - 256 K и выше.