Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по физике 1курс полные.docx
Скачиваний:
515
Добавлен:
11.06.2015
Размер:
1.94 Mб
Скачать

Тема 6. Корпускулярная оптика

Соглас­но квантовой гипотезе Планка-Эйнштейна свет частотой n испускается, распространяется и поглощается веществом отдельными порциями (квантами), энергия которых eо=hn (h – постоянная Планка). Эти локализованные в пространстве дискретные световые кванты, движущиеся со скоростью с рас­пространения света в вакууме, получили назва­ние фотонов. Таким образом, распространение света можно рассматривать не как непрерывный волновой процесс, а как поток частиц – фотонов. Доказательством этих квантовых (корпускулярных) представлений о свете, как о потоке частиц, являются фотоэффект и эффект Комптона.

Внешним фотоэффектомназывается испускание электронов веществом под действием электромагнитного излучения. Явление внешнего фотоэффекта и его закономерности объяснены на основе квантовой теории фотоэффекта, согласно которой каждый квант света поглощается только одним электроном. Поэтому число вырванных фотоэлектронов пропорционально интенсивности света.

Энергия hn падающего на металл фотона расходуется на совершение электроном работы вы­ходаАиз металла и на сообщение вылетевшему фотоэлектрону кинетичес­кой энергии, то есть по закону сохранения энергии:

(уравнение Эйнштейнадлявнешнего фотоэффекта).

Из этого уравнения следует, что максимальная кинетическая энергия фотоэлектрона ли­нейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности, то есть от числа фотонов. Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается, то при некоторой частоте n=n0кинетическая энергия фотоэлектронов станет равной нулю и в этом случае энергия фотона hn0равна работе выходаА, из чего следует, чтоn0=А/h(частотаn0носит названиекрасной границы фотоэффекта). При частоте n<n0 фотоэффекта не будет.

Масса и импульс фотона. Согласно квантовой гипотезе Планка-Эйнштейна, распространение света можно рассматривать как поток частиц – фотонов, энергия которыхe0=hn . Тогда из уравнения Эйнштейна взаимосвязи массы и энергииE=mc2следует, что масса фотона:

.

Поскольку фотон движется со скоро­стью света с, то импульс фотонар :

.

Следовательно, фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Полученные выражения связывают корпускулярныехарактеристики фотона – массу, импульс и энергию – сволновойхарактеристикой света – его частотойn(или длиной волныl).

Корпускулярные свойства света проявляются в эффекте Компто­на.

Эффектом Комптонаназывается увеличение длины волны коротковолнового электромаг­нитного излучения при его упругом рассеянии на свободных электронах вещества. Опыты Комптона показали, что разность длин волн рассеянного (l') и падающего (l) электромаг­нитного излучения, то есть величинаDl=l'–lне зависит от длины волныlпадающего излучения и природы рассеивающего вещества (РВ), а определяется только углом рассея­нияq, то есть углом между направлениями лучей до и после рассеяния (рис. 11):

,

где комптоновская длина волны.

(При рассеянии фотона на электроне = 2,426 пм).

Эффект Комптона не укладывается в рамки волновой теории света, и его объяснение дано на основе квантовых (корпускулярных) представлений о природе света. Если считать, что излучение имеет кор­пускулярную природу, то есть представляет собой поток фотонов, то эффект Комп­тона – это результат упругого столкновения рентгеновских фотонов со свободными элек­тронами вещества. В процессе этого столкновения фотон переда­ет электрону часть своих энергии и импульса в соответствии с законами их сохранения, что ведет к уменьшению энергии (или увеличению длины волны) фотона при его соударении с электроном (эффект Комп­тона).

Исходя из законов сохранения импульса и энергии, для упругого столкновения двух частиц (рис. 11) – налетающего фотона, обладающего импульсом и энергиейe =hn, с покоящимся свободным

электро­ном, было получено следующее выражение для увеличения длины волны фотона при его рассеянии на свободных электронах:

.

(На рисунке 11 введены следующие обозначения: pи p'– импульсы фотона до и после рассеяния;pe – импульс электрона после рассеяния на нем фотона).

Полученное на основе корпускулярных свойств света, выражение для величины Dlоказалось аналогично приведенному выше выражению для величиныDl, полученному Комптоном экспериментально. Следовательно, эффект Комптона является экспериментальным доказательством проявления корпускулярных свойств света как потока частиц – фотонов.

Единство корпускулярных и волновых свойств света и вещества. С одной стороны, рассмотренные явления фотоэффекта и эффекта Комптона служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов, а, с другойстороны, такие явления, как интерференция, дифракция и поляризация света подтверждают волновую природу света. Свет, обладая одновременно корпускулярными и волновыми свойствами, проявляет так называемый корпускулярно-волновой дуализм.

Развивая представления о двойственной корпускулярно-волновой приро­де света, Луи де Бройль выдвинул гипотезу об универсальностикорпускулярно-волнового дуализма.Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Cогласно гипотезе де Бройля с каждым микрообъектом связываются, с одной сторо­ны,корпускулярныехарактеристики, такие как энергияe и импульсp , а с другой стороны –волновые характеристики, такие как частотаnи длина волныl .Количественные соотношения, связыва­ющие корпускулярные и волновые свойства частиц, такие же, как и для фотонов:

, .

Согласно гипотезе де Бройля любой частице, обладающей импульсом p,ставится в соответствие волновой процесс с длиной волны, определяемой поформуле де Бройля:.