Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Нурушев Введение в поляризационную 2007

.pdf
Скачиваний:
118
Добавлен:
16.08.2013
Размер:
32.3 Mб
Скачать

колебаний и ошибки в юстировке магнитных элементов в сумме приводят к возникновению резонансов при выполнении условия

νs = k + mxQx + mzQz + msQs ,

(10)

где k, mx, mz и ms – целые числа, Qx, Qz и Qs – бетатронные частоты. Соотношение (10) может быть использовано для нахождения деполяризующих резонансов. Более внимательный анализ спиновой диффузии показывает, что скорость деполяризации пропорциональна скорости “накачки”

поляризации (4), умноженной на полином от спиновой настройки νs. Причем должны учитываться все сильные резонансы с полюсными выражениями для них в знаменателе. С ростом энергии увеличиваются и количество резонансов, и их мощности. Особенно опасными считаются так называемые синхротронные боковые полосковые резонансы. Они возникают как побочные от сильных родительских резонансов первого порядка с числами mx = ±1 или mz = ±1, при этом ms представляет небольшое целое число.

Хотя механизм поляризации является слабым и достаточно длительным, физики показали, что он может быть наблюдаем, усилен и использован в электронных накопительных кольцах. Впервые эффект радиационной поляризации наблюдали на установках ВЭПП (СССР) и ALCO (Италия) почти одновременно. С большой точностью эти эффекты измерили в Новосибирске на установках ВЭПП, ВЭПП-2, ВЭПП-3, ВЭПП-4. Несколько позже поляризацию электронных пучков за счет синхротронного излучения наблюдали на следующих установках: CESR, SPEAR, DORIS [Potaux (1971), Shatunov (1990), Mackay (1984), Barber (1984)]. Однако все эти машины работали при относительно низких энергиях, а именно, несколько ГэВ. Как известно, деполяризующие резонансы становятся сильными с ростом энергии. В этом плане надо считать заметным достижением получение поляризованного электронного пучка с энергией 16,5 ГэВ в PETRA в 1982 г. [Bremer (1982)]. При этом пришлось разработать и применить специальное устройство для подавления гармоник поля, близких к спиновой настройке.

Начиная с 1990 г., была обнаружена поляризация электронов на уско-

рителях TRISTAN, LEPP, HERA. В 1992 г. на коллайдере HERA был по-

лучен электронный пучок с поляризацией 56 % при энергии 26,7 ГэВ. В 1993 г. с помощью коррекции замкнутой орбиты была получена вертикальная поляризация электронного пучка в 57 % на LEPP при энергии около 46 ГэВ.

Специальные исследования с искусственным возбуждением деполяризующих резонансов показали, что в HERA опасными являются четвертые гармоники; –1, 0, +1 и вторая гармоника. Так как каждому резонансу соответствует комплексная амплитуда с реальной и мнимой частями, то

301

имеются всего восемь параметров, которые надо минимизировать. Для этого используются восемь коротких магнитных катушек с горизонтальными магнитными полями (их жаргонное название “бампы”), чтобы индивидуально подавить все восемь амплитуд. Рис. 1 показывает предварительные результаты оптимизации орбиты в HERA при энергии 26,7 ГэВ

(νs = 60,5). При этом подгонялась мнимая амплитуда гармоники +1. Когда была достигнута для этой гармоники мнимая часть амплитуды

– 1,8 мм, была получена поляризация выше 30 % (сплошная линия с точками). Дополнительная коррекция орбиты привела к поляризации близкой к 40 % (пунктирная линия с экспериментальными точками).

Аналогичная схема оптимизации замкнутой орбиты была применена и

в TRISTAN при энергии 28,86 ГэВ (νs = 66,5). Вначале было скорректировано средне-квадратичное отклонение вертикальной замкнутой орбиты до уровня 0,3 мм, и при этом поляризация не изменилась. Затем с помощью восьми бампов был скорректирован наклон вертикальной замкнутой орбиты при гармонике, близкой к спиновой настройке. Рис. 2 показывает, как коррекция +66-ой гармоники позволила увеличить поляризацию с 7 до

(75±15) %.

Рис. 1. Оптимизация поляризации в HERA гармоническими полями при энергии 26,7 ГэВ

302

Для настройки ускорителя с поляризованным пучком очень важно не только быстро поляризовывать пучок, но надо уметь его также быстро деполяризовывать. Как показывает опыт работы на перечисленных выше установках, это можно сделать с помощью тех же корректоров, что использовались при поляризации пучка. После того как пучок деполяризован, можно включить корректоры и измерять скорость нарастания поляризации в экспоненте и, используя выражение (1), найти время нарастания поляризации τ методом подгонки. Величина τ состоит из двух компонент:

τ1 = τС1T + τдеп1 .

(11)

Рис. 2. Коррекция деполяризации в TRISTAN гармоническими полями при энергии 28,86 ГэВ

Здесь τСТ представляет теоретическую скорость нарастания поляризации и дается формулой (4), а τдеп представляет скорость деполяризации

пучка. Зная τ из соотношения (11), можно определить τдеп. Тогда, используя формулу

Peq = PCT

 

τдеп

 

= PCT

 

τ

,

(12)

τ

СТ

+ τ

деп

τ

CT

 

 

 

 

 

 

 

можно определить поляризацию Peq с малой систематической ошибкой.

Результаты применения описанного метода к LEP при энергии 46,5 ГэВ (νs = 105,5) показаны на рис. 3. При τ = (35±15) мин получена поляриза-

303

ция Peq =(19,7±3,1) %. На TRISTAN измерения были проведены при энер-

гии 14,76 ГэВ (νs = 33,5). Рис. 4 показывает, что при τ = 68 мин получено (после пересчета асимметрии в поляризацию) Peq = (69±24) %. Наконец,

рис. 5 представляет результат измерений на HERA при энергии 26,7 ГэВ

(νs = 60,5). Получена поляризация (46,5±5) %. Все приведенные значения поляризации хорошо согласутся с измеренными на поляриметрах [Barber (1992)].

В проекте комплекса HERA с самого начала предусматривалось создание продольно-поляризованного электронного пучка с тем, чтобы изучать спиновые эффекты в электрослабых взаимодействиях.

Рис. 3. Время накачки поляризации на LEP при энергии 46,5 ГэВ

Эта задача, поставленная физиками, состоит в том, чтобы в месте столкновения протонов и электронов поляризация электронов была продольной, т.е. направлена по импульсу (или против импульса) электрона. Есть еще одна задача, а именно: предусмотреть возможность быстрого реверса направления поляризации пучка электронов. Эта задача более простая, чем перечисленные выше две задачи, тем не менее, по условиям физического эксперимента она тоже должна быть решена. Эти требования возникли из программы HERMES, которая была предложена в 1990 г. [HERMES (1990)]. Чтобы показать практическую возможность получения сначала поперечной, а затем и продольной поляризации электронного пучка, специалистам пришлось выполнить значительный объем работ, и эксперимент начался в 1994 г.

304

Рис. 4. Время накачки поляризации на TRISTAN при энергии 14,76 ГэВ

Рис. 5. Время накачки поляризации на HERA при энергии 26,7 ГэВ

Необходимость получения продольной поляризации электронного пучка требует установки специального устройства, называемого “спиновым ротатором”. Спиновый ротатор представляет набор радиальных магнитных полей, который позволяет изменить устойчивое направление по-

305

ляризации из вертикального в продольное. При этом спин-ротатор не должен менять динамику движения электрона. Введение радиальных полей приводит к тому, что замкнутая орбита не является больше плоской, стабильное направление спина меняется, и с учетом конечных размеров пучка это приводит к излучению электроном фотонов. В результате спиновый ротатор оказывается источником диффузии спина.

Решение проблемы получения продольной поляризации электронов состоит в том, чтобы, по возможности, обнулить член γdr = γ nγ в фор-

муле (8) в местах, где член ρ 3 велик. Это достигалось методом так на-

зываемого “спинового согласования”, который включает две процедуры: оптимизация замкнутой орбиты и коррекция оптики пучка. Было много сомнений в том, что спиновые ротаторы сработают, как планировалось, и метод спинового согласования окажется действенным. Тем не менее, в мае 1994 г. с помощью пары спиновых ротаторов и применением перечисленных выше двух процедур была получена продольная поляризация в 65 %. Это был первый случай в истории, когда эффект Соколова–Тернова был использован в накопителе для получения продольно-поляризованных электронов [Barber (1995)]. С этого момента началась весьма успешная реализация поляризационной программы HERMES. Краткая хронология получения поляризованных электронных пучков в электронных накопительных кольцах представлена в табл. 1.

Продольно-поляризованные электронные пучки

Таблица 1

 

 

 

 

 

 

 

Установка

Энергия (ГэВ)

Поляризация (%)

 

Год

VEPP

0,65

80

 

1970

ACO

0,53

90

 

1970

VEPP-2M

0,65

90

 

1974

SPEAR

3,7

90

 

1975

VEPP-3

2

80

 

1976

VEPP-4

5

80

 

1982

PETRA

16,5

70

 

1982

CESR

5

30

 

1983

DORIS

5

80

 

1983

LEP

47

57

 

1993

HERA

26,7

60

 

1993

HERA (продольная

27,5

70

 

1994

поляризация)

 

 

 

 

 

306

 

 

 

Все приведенные в табл. 1 поляризации электронов являются поперечными, за исключением самой последней строки. Здесь отмечено, что впервые на ускорителе HERA была получена продольная поляризация 70 % у электронов. При этом время жизни поляризации составляло около 10 ч. На ускорителе HERA получен также пучок поляризованных позитронов с поляризацией 50 %.

§41.2. Поляризованный электронный пучок линейного коллайдера SLC

SLC (SLAC Linear Collider – Линейный Коллайдер SLAC (Stanford Linear Accelerator Center) или ЛКС, длина 3 км) представляет собой линейный коллайдер, предназначенный для изучения образования и распада промежуточных бозонов. Он состоит из двух частей, а именно, линейного ускорителя (линак) и двух арок. Линак предназначается для ускорения электронов и позитронов до энергии 46,6 ГэВ, а арки – для организации их встречи. В проекте коллайдера с самого начала была заложена возможность ускорения продольно-поляризованных электронов. Так как в линейных ускорителях нет механизма поляризации за счет синхротронного излучения, то в них используется специально разработанный источник поляризованных электронов. В нормальном режиме величина поляризации в ЛКС сегодня составляет 80 %. Уникальность ЛКС состоит в следующем. Это самый крупный по энергии коллайдер, имеющий продольнополяризованный пучок электронов, и на нем параллельно ведутся эксперименты как в коллайдерной моде (детектор SLD), так и с фиксированными мишенями в специальной зоне для выведенного электронного пучка (зона ESA – End Station A). Эти эксперименты на фиксированных мишенях были пионерскими в изучении спиновой структуры нуклонов, как,

например, эксперименты Е-80 [Alguard (1976)] и Е-130 [Baum (1983)]. По-

сле открытия в 1987 г. в ЦЕРН эффекта “спинового кризиса” в зоне ESA были выполнены эксперименты, перечисленные в табл. 2. Параметры поляризованных электронных пучков для этих экспериментов были значительно улучшены, по сравнению с параметрами пучков для первых опытов. Цель этих экспериментов состояла в измерении структурных функций протона и нейтрона и проверке правил сумм Бьеркена и ЭллисДжаффе. Результаты этих экспериментов с высокой степенью точности подтвердили вывод эксперимента EMC (ЦЕРН), что кварки несут очень малую долю спина родительского нуклона. Они также подтвердили правильность правила сумм Бьеркена и нарушение правила сумм Эллис– Джаффе.

В дальнейшем изложении мы дадим информацию о методе получения пучка продольно-поляризованных электронов на самом крупном и пока

307

единственном электрон-позитронном коллайдере ЛКС. При этом в значительной степени мы следуем работе [Woods (1994)].

 

 

Параметры пучков в зоне ESA

Таблица 2

 

 

 

 

Е142

 

 

 

 

Параметр

Е143

Е154

Е155

В этой таблице N означа-

N, стат.

2 1011

4 109

2 1011

4 109

ет набранную (для Е142 и

f, Гц

120

120

120

120

Е143) или

ожидаемую

 

1

 

 

 

(для Е153 и Е154) стати-

τ, нс

2

100

100

 

 

 

 

 

стику: f – частоту циклов

Е, ГэВ

22,7

29,2

48,6

48,6

электронного

пучка, T

P, %

40

84

80

85

длительность сеанса и год

T, мес

2

3

2

3

– дата проведения экспе-

Год

1992

1993

1995

1995

римента.

 

1. Источник поляризованных электронов

Поляризованные электроны получаются облучением фотокатода из GaAs поляризованными лазерными лучами (рис. 6).

Рис. 6. Источник поляризованных электронов в ЛКС

В этой схеме используются два разных лазерных генератора, поскольку эксперименты с фиксированными мишенями (ЭФМ) в зоне ESA и ЛКС требуют пучки разной временной структуры (см. табл. 2 и 3). Для ЭФМэкспериментов применяется лазерный генератор на Ti-сапфире (TiS) с ламповой подкачкой, чтобы получить импульсы с длительностью две

308

микросекунды. Для работы на SLD (ЛКС) используются два лазерных генератора на TiS c подкачкой на Nd:YAG (иттрий-алюминиевый гранат, активированный неодимом) для получения двух импульсов с длительностью 60 нсек. Один импульс используется для формирования электронного пучка, а другой – позитронного пучка для коллайдерного эксперимента

SLD.

Линейно-поляризованные лазерные лучи через систему зеркал попадают в четвертьволновую ячейку Поккера, где они преобразуются в цир- кулярно-поляризованный свет. Путем изменения знака напряжений на ячейках Поккера можно изменить направление циркулярной поляризации фотонов, соответственно и направление поляризации электронов. Это изменение происходит по закону случайной выборки с частотой 120 Гц (частота ЛКС) и обеспечивается специальным генератором. Такая операция крайне важна для минимизации систематических ошибок в эксперименте.

Схему переброса электронов GaAs фотокатода из валентных уровней в зону проводимости можно увидеть на рис. 7.

Слева на рис. 7 рассмотрен случай ненапряженного GaAs-фотокатода. Фотоны положительной спиральности и с энергией в интервале 1,43 < E< 1,77 эВ могут перебросить валентные электроны с двух уровней j = 3/2 на два уровня j = 1/2 в зоне проводимости (сплошные линии). Тогда для этих двух переходов, согласно коэффициентам Клэбша–Гордона, вероятности переходов будут относиться как 3:1. Следовательно, ожидаемая поляризация электронов будет составлять 50 %. При этом направление поляризации выходящих из фотокатода электронов будет совпадать с направлением поляризации фотона, так как они движутся в противоположных направлениях. На рис. 7 (слева) видно, что уровни j = 3/2 вырождены. Если суметь снять это вырождение так, как показано на рис. 7 справа, то ситуация резко меняется. Теперь остается переход только с одного уровня, а на переход с другого уровня энергии уже не хватает. В результате можно достичь 100 % поляризации электронов. На практике снятия вырождения уровней с j = 3/2 можно достичь приготовлением так называемого напряженного материала GaAs. Это делается следующим способом. Выращиваются тонкие слои этого материала на подложке из GaAsP. Смесь таких двух материалов как раз и приводит к смещению уровней, показанному на рис. 7 справа. Такие материалы производятся теперь на коммерческой основе. Их квантовая эффективность, определенная как число фотоэлектронов на один падающий фотон, составляет около 0,2 %.

Дальнейшее улучшение эксплуатационных параметров источника опи-

сано в статье [Clendenin (2002)].

309

Рис. 7. Энергетические уровни ненапряженного (a) и напряженного (b, в обозначениях – “strain”) GaAs и разрешенные переходы из валентных уровней в зону проводимости: сплошные линии обозначают переходы, стимулированные фотонами с положительной спиральностью, пунктирные – с отрицательной; числа в кружочках указывают вероятности соответствующих переходов

2.Поляризованные электроны в зоне ESA для экспериментов

сфиксированными мишенями

Теперь остается проблема ускорения поляризованного электронного пучка от 60 кэВ до 46,6 ГэВ и транспортировки до потребителя. Наиболее просто это осуществляется для экспериментальной зоны ESA (рис. 8).

Так как пучок продольно-поляризован, то в продольном же ускоряющем электрическом поле спин никаких изменений не претерпевает. Однако при конечной энергии пучок отклоняется в горизонтальной плоскости

на угол θ = 428 мрад. Спин при этом опережает угол поворота электрона

на величину ∆θs = θs θ = γGθ. Когда ∆θs = nπ, пучок электронов оказывается продольно-поляризованным. Это происходит при энергиях

Е = n 3,24 ГэВ.

Величина поляризации пучка определяется поляриметром Меллера, описанным в разделе “Поляриметрия”. Пучок далее взаимодействует с поляризованной мишенью с целью измерения структурных спиновых функций. Параметры поляризованных электронных пучков и наименование выполненных в ESA экспериментов с фиксированной поляризованной мишенью приведены в табл. 2.

310