Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 6 Част 2 2008

.pdf
Скачиваний:
1235
Добавлен:
16.08.2013
Размер:
47.96 Mб
Скачать

лах, коррозия карбидного слоя покрытия микротвэлов и их радиационная стойкость..

В основу учебника положены учебные пособия, изданные Ю.Г. Годиным в последние годы: «Физическое металловедение урана и его сплавов» (МИФИ, 1997), «Физическое материаловедение и технология МОХ топлива» (МИФИ, 2001) и «Физическое металловедение плутония и его спла-

вов» (МИФИ, 2004).

Учебный материал в главах учебника представлен с учетом уровня фи- зико-математической подготовки студентов в соответствии с Государственным образовательным стандартом по специальности «Физика металлов».

Книга снабжена списком условных обозначений и сокращений в тексте и предметным указателем. Каждый раздел главы содержит контрольные вопросы, в конце главы помещен список литературы, использованной авторами и рекомендуемой студентам для более детального изучения материала.

11

ГЛАВА 24. ЯДЕРНЫЕ ТОПЛИВНЫЕ МАТЕРИАЛЫ

24.1. Общие сведения о ядерном топливе

Ядерное топливо это вещество, которое используется в ядерных реакторах для осуществления ядерной цепной реакции деления. Существует только одно природное ядерное топливо – урановое, которое содержит делящиеся нуклиды 235U, обеспечивающие поддержание цепной реакции (ядерное горючее), и так называемые «воспроизводящие» или «сырьевые» нуклиды 238U, способные, захватывая нейтроны, превращаться в новые делящиеся ядра 239Рu, не существующие в природе (вторичное горючее):

238U(n,γ)239U β239Np β239Pu α

28,5 мин

2,3 дня

2,4 104 лет

Вторичным горючим являются также не встречающиеся в природе ядра 233U, образующиеся в результате захвата нейтронов сырьевыми ядрами 232Th:

232Th(n,γ)233Th β233Pa β233U α

23,5 мин

27,4 дня

1,6 105 лет

Торий как сырьевой материал для получения делящихся ядер 233U не нашел широкого применения по ряду причин:

1)разведанные запасы U в состояния обеспечить ядерную энергетику ядерным топливом на многие десятилетия;

2)Th не образует богатых месторождений, и технология его извлечения из руд сложнее;

3)наряду с 233U образуется 232U, который, распадаясь, образует γ-активные ядра (212Bi, 208Te), затрудняющие обращение с таким ядерным топливом:

12

4) переработка облученного ториевого топлива с целью извлечения из них 233U является более трудной и дорогостоящей операцией по сравнению с переработкой уранового топлива.

Топливо на основе урана для ядерных реакторов на тепловых нейтронах, составляющих основу ядерной энергетики, имеет обычно повышенное содержание изотопа 235U (2 – 4 % по массе вместо 0,718 % в естественном (природном) уране). Существенный недостаток реакторов на тепловых нейтронах – низкий коэффициент использования природного урана. Несравнимо более высокий коэффициент использования урана может быть достигнут в реакторахразмножителях на быстрых нейтронах. В них используется уран с более высоким содержанием нуклида 235U (до 30 %), а также возможно использовать смешанное уран-плутониевое ядерное топливо с 15 – 20 % Pu. В этом случае вместо обогащенного урана может быть использован природный и даже обедненный 235U уран, которого накопилось в мире уже достаточно большое количество. Обедненный уран (без Pu) используется также в экранной зоне ре- актора-размножителя (зоне воспроизводства), по весу превышающей в несколько раз активную зону. В реакторах на быстрых нейтронах, работающих на уран-плутониевом ядерном топливе, количество накапливающегося 239Рu может существенно превышать количество сгораемого, т. е. имеет место расширенное воспроизводство ядерного топлива.

Производство уранового ядерного топлива (рис. 24.1.) начинается с переработки руд с целью извлечения из них урана. При предварительной сортировке руды по γ-излучению в отвал удаляют 20 – 30 % породы с содержанием урана 0,01 % (применяются и обычные методы обогащения). Гидрометаллургическая переработка руды состоит в ее дроблении, кислотном выщелачивании, сорбционном или экстракционном извлечении U из осветленных растворов или пульп и получении очищенной закиси-окиси урана U3O8. Для руд, бедных ураном и легких для выщелачивания (осо-

13

бенно в трудных для горных работ условиях), применяют подземное выщелачивание в самом месторождении (для пластовых месторождений – через систему скважин, для жильных – в подземных камерах с предварительной отбойкой и дроблением руды взрывными методами). Далее U3O8 переводят или в тетрафторид UF4 для последующего получения металлического урана, или в гексафторид UF6 – единственное устойчивое газообразное соединение урана, используемое для обогащения урана изотопом 235U. Обогащение осуществляется методом газовой термодиффузии или центрифугированием. Далее UF6 переводят в диоксид урана, который используется для изготовления топливных сердечников или для получения других соединений урана с той же целью.

Рис. 24.1. Ядерный топливный цикл

14

Ядерное топливо в большинстве случаев содержит легирующие элементы (O, C, N, Al, Fe, Cr, Mo, Si), придающие ему необходимые физические, химические и механические свойства, а так же повышающие радиационную стойкость. Под радиационной стойкостью понимается минимально возможное изменение формы, объема и свойств исходной топливной композиции под действием нейтронного облучения и радиационного воздействия осколков деления.

Впоследнее время в топливо вводят выгорающий поглотитель нейтронов (ВПН), который расходуется в процессе эксплуатации реактора (B, Gd, Er). Принцип работы ВПН состоит в том, что его нуклиды, имея высокое сечение захвата нейтронов, после захвата нейтрона превращаются в изотопы с малым сечением захвата нейтронов и в дальнейшем перестают поглощать нейтроны (выгорают). Причем скорость убыли ядер поглотителей в результате поглощения нейтронов, меньше или равна скорости убыли ядер топлива в результате деления. Если в активную зону (АЗ) реактора загружается топливо, рассчитанное на работу в течение года, то очевидно, что количество ядер делящегося топлива в начале работы будет больше чем в конце, и необходимо скомпенсировать избыточную реактивность, поместив в АЗ поглотители. Избыточная реактивность необходима для обеспечения требуемого выгорания топлива в активной зоне реактора. Если для этой цели использовать регулирующие стержни, то необходимо постоянно перемещать их, по мере того как количество ядер топлива уменьшается. Использование выгорающих поглотителей позволяет уменьшить использование движущихся стержней. В прошлом в качестве ВПН использовались неподвижные поглотители, выгружаемые из активной зоны вместе с топливом в процессе перегрузки. В настоящее время выгорающие поглотители часто помешают непосредственно в топливные таблетки, при их изготовлении (интегрированные ВПН).

24.1.1.Состав ядерного топлива

иего классификация

Взависимости от вида делящихся и воспроизводящих нуклидов ядерное топливо можно разделить на:

15

-топливо на основе урана природного изотопного состава; данный вид топлива используется редко, так как не позволяет достигать больших глубин выгорания;

-топливо на обогащенном уране; на данный момент это основной вид ядерного топлива, типичное обогащение для реакторов на тепловых нейтронах составляет 1,8 – 4,2 мас. %, а для реакторов на быстрых нейтронах 15 – 30 мас. %;

-уран-плутониевое топливо; в этом виде топлива делящимся изотопом является 239Pu и его содержание составляет 15 – 30 мас. %, а в качестве воспроизводящего нуклида используется 238U либо из урана природного изотопного состава, либо из отвалов обогатительного производства, либо полученный при регенерации отработавшего ядерного топлива; оно является основным видом топлива для реакторов на быстрых нейтронах, так как в этом случае осуществляется расширенное воспроизводство ядерного топлива, в последнее время так же используется в тепловых реакторах с целью

сжигания запасов оружейного плутония, в этом случае содержание 239Pu составляет до 5 мас. % и расширенного воспроизводства не

происходит;

- уран-ториевое топливо, делящийся нуклид 233U или 235U для наработки 233U в начале топливного цикла, воспроизводящий нуклид 232Th; как было сказано выше, редко используется в связи с жестким γ-излучением продуктов распада 232U.

По химическому составу ядерное топливо может быть: металлическим (включая сплавы), оксидным, карбидным, нитридным, силицидным и др.

По агрегатному состоянию топливо может быть: твердым, жидким, газообразным, дисперсным и микротвэльным.

Вкачестве жидкого топлива рассматриваются сплавы плутония

пл ≈ 440 ºC) и его соли, которые планируется использовать в жидком виде в гомогенных реакторах, что позволяет существенно улучшить радиационную стойкость топлива, однако эти расплавы являются химически агрессивными, что сдерживает их использование.

Вкачестве газообразного топлива основным соединением явля-

ется UF6. Оно переходит в газообразное состояние при температуре 56,5ºC и используется для обогащения, хранения и транспортиров-

16

ки перед производством твердых видов топлива. Непосредственно в реакторах не используется из-за высокой химической активности.

Дисперсное топливо представляет собой композиционный материал, в котором топливные частицы размещаются в металлической или керамической матрице, не содержащей делящихся нуклидов. Такой вид топлива обладает очень высокой надежностью, применяется в исследовательских и транспортных реакторах и работает до очень больших выгораний в связи с чем, обогащение по делящемуся изотопу в нем может достигать 90 %.

Микротвэльное топливо представляет собой микросферы из топливного материала диаметром ~ 500 мкм, на которые наносятся слои защитных покрытий из пироуглерода, предотвращающие выход продуктов деления из топливной частицы и обеспечивающие механическую прочность, и предназначено для высокотемпературных газографитовых реакторов.

24.1.2. Выгорание и энергонапряженность ядерного топлива

Выгорание ядерного топлива – это снижение концентрации любого нуклида в ядерном топливе, вследствие ядерных превращений этого нуклида при работе реактора. Наиболее точно выгорание характеризуется полным количеством делений в единице объема топлива за все время облучения [дел./см3].

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в ядерном реакторе на 1 т топлива. Для реакторов, работающих на естественном уране, максимальное выгорание ~10 ГВт·сут/т U (тяжело-водные реакторы). В реакторах со слабо обогащенным ураном (2–3% 235U) достигается выгорание ~20–30 ГВт·сут/т U. В реакторах на быстрых нейтронах – до 100 ГВт·сут/т U. Выгорание 1 ГВт·сут/т U соответствует сгоранию ~ 0,1 % ядерного топлива. Выгорание так же может измеряться в процентах тяжелых атомов (% т.а. или ат. %), которые испытали акт деления, или в количестве продуктов деления на единицу объема топливного материала (г/см3). Соотношение между различными единицами измерения глубины выгорания топлива для некоторых топливных материалов теоретической плотности представлены в табл. 24.1.

17

Таблица 24.1

Соотношение между различными единицами измерения глубины выгорания топлива

Топливо

Глубина выгорания

1020, дел./см3

% т.а.

МВт·сут/т U

U (тв.)

1

0,213

2040

4,71

1

9600

 

Pu (ж.)

1

0,967

9280

1,03

1

9600

 

UO2

1

0,401

3860

2,49

1

9600

 

UC

1

0,299

2880

3,34

1

9600

 

UC2

1

0,363

3490

2,75

1

9600

 

UN

1

0,287

2760

3,48

1

9600

 

При выгорании ядерного топлива реактивность уменьшается (в реакторах на естественном уране при малых выгораниях происходит некоторый рост реактивности). Замена выгоревшего топлива может производиться сразу из всей активной зоны или постепенно по твэлам (ТВС) так, чтобы в активной зоне находились твэлы всех кампаний – режим непрерывной перегрузки (возможны промежуточные варианты). В первом случае реактор со свежим топливом имеет избыточную реактивность, которую необходимо компенсировать. Во втором случае такая компенсация нужна только при первоначальном запуске, до выхода в режим непрерывной перегрузки. Непрерывная перегрузка позволяет увеличить глубину выгорания, поскольку реактивность определяется средними концентрациями делящихся нуклидов (выгружаются твэлы с минимальной концентрацией делящихся нуклидов).

Энергонапряженность ядерного топлива – это количество тепла, выделяющегося в единице объема топливного материала в процессе его работы в ядерном реакторе. Удельное тепловыделение в активной зоне достигает 108 109 Вт/м3, т.е. ядерное топливо работает в условиях высокой энергонапряженности. Энергонапряженность зависит от типа и режима работы реактора. Она определяет уровень температур компонентов активной зоны.

18

24.1.3. Условия работы топливных материалов

Впроцессе работы ядерное топливо подвергается воздействию высоких температур, что снижает его механические свойства и увеличивает степень физико-химического взаимодействия как с оболочкой твэла, так и с теплоносителем в случае разгерметизации твэла. Термические градиенты в топливе могут приводить к перераспределению его компонентов и продуктов деления, а так же к изменению структуры ядерного топлива. Кроме того, за счет разницы коэффициентов линейного термического расширения топлива и оболочки изменение температуры приводит к их физикомеханическому взаимодействию.

На свойства топливных материалов существенное влияние оказывает облучение нейтронами и радиационное повреждение осколками деления. Такого рода воздействие может приводить к изменению размеров и деформации некоторых топливных материалов, называемой радиационным ростом. Так же облучение приводит к появлению радиационной ползучести, не зависящей от температуры при низких температурах и ускоряющей термическую ползучесть в области высоких температур.

Врезультате выгорания образуются продукты деления, которые оказывают отрицательное воздействие на свойства топлива (снижение теплопроводности, температуры плавления, изменение коэффициентов диффузии и т.д.). Под действием продуктов деления происходит твердое и газовое распухание топливных материалов. Накопление продуктов деления с высоким сечением захвата тепловых нейтронов приводит к зашлаковыванию ядерного топлива. При остановке реактора происходит «отравление ксеноном» (это явле-

ние так же называют «йодной ямой»), оно заключается в накоплении большого количества изотопа 135Xe с высоким сечением захвата тепловых нейтронов и осложняет повторный запуск реактора. Продукты деления приводят к возрастанию физико-химического взаимодействия топлива с оболочкой твэла, а так же участвуют в процессе коррозии оболочки, что может приводить к ее разрушению.

19

24.1.4. Требования к ядерному топливу

Основными требованиями к ядерному топливу являются:

1.Высокие ядерно-физические свойства, т.е. минимальное паразитное сечение захвата тепловых нейтронов.

2.Высокая радиационная стабильность, т.е. максимальное сопротивление изменению формы и объема в процессе эксплуатации.

3.Высокая теплопроводность, что позволяет увеличить диаметр топливных сердечников, снизить объемную долю конструкционных материалов в АЗ и увеличить КПД реактора.

4.Высокая температура плавления, что обеспечивает повышенную безопасность работы реактора в переходных режимах и в аварийных условиях.

5.Отсутствие фазовых переходов в области рабочих температур, так как они обычно сопровождаются изменением размеров (формы) топливных сердечников, а так же при этом изменяются исходные свойства топлива.

6.Хорошая совместимость с материалом оболочки, т.е. отсутствие физико-химического взаимодействия в рабочих условиях в течение кампании топлива.

7.Высокая коррозионная стойкость в теплоносителе.

8.Высокая плотность, что позволяет повысить КВ, и высокое удельное содержание делящихся нуклидов в единице объема, а так же сократить размер АЗ.

9.Высокая теплоемкость, что определяет скорости изменения температуры в АЗ при переходных режимах.

10.Технологичность производства и минимальная стоимость.

24.1.5.Особенности ядерного топлива

1.Чрезвычайно высокая калорийность. По тепловыделению 1 г 235U эквивалентен 3 т антрацита.

2.При выгорании ядерного топлива происходит его воспроизводство. Этот процесс обычно характеризуется коэффициентом

воспроизводства (КВ), который определяется как

КВ= количество образовавшихся нуклидов количество разделившихся нуклидов

20