Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1037
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

Третий подход является комбинацией первых двух методов разработки материалов и по определению Б.Б. Гуляева назван «синте-

зом сплавов». Это, по сути, определенная методология разработки материалов, учитывающая существующие теоретические представления физики и химии твердого тела, теоретического и прикладного материаловедения (металловедения) и практический опыт получения и применения материалов, включающая исходные данные, основную задачу и этапы ее решения.

Исходными данными для синтеза сплавов служат: условия работы техники, опыт по разработке материалов, свойства химических элементов (по таблице Д.И. Менделеева), требования к материалу (основные и ограничивающие).

Основной задачей синтеза сплавов является определение состава сплава, технологии его обработки для создания структурностабильного материала.

Основой методологии синтеза сплавов, т.е. рабочими инстру-

ментами являются:

физико-химический анализ;

технико-экономические оценки;

вычислительный эксперимент, включающий последовательность действий: модель – алгоритм – программа – анализ результатов – решение.

Синтез сплавов предусматривает следующие основные этапы:

выбор основы сплава, состояние которого соответствуют основным требованиям к его свойствам;

выбор легирующих элементов, выявление вредных примесей;

выбор легирующего комплекса и состава с учетом всех требований к свойствам сплава;

получение (выплавка) сплава;

стабилизация СФС методами термомеханической и термической обработок, модифицированием СФС приповерхностных слоев

идругими методами.

Заложенные в системе возможности позволяют выявить предельные изменения свойств материалов за счет легирования, термической и других видов обработки.

71

Система синтеза материалов предполагает использование теорий фазовых равновесий и фазовых превращений, теоретических представлений и интерпретаций эффектов комплексного легирования, в основе которого лежит химическое взаимодействие атомов между собой. Для описания межатомного взаимодействия оперируют набором количественных критериев, включающим потенциалы взаимодействия, атомные и ионные радиусы, элетроотрицательность, валентность и потенциалы ионизации, которые характеризуют электронное строение, размеры, энергетику атомов и их ионов.

При синтезе сплава важной является корреляция структуры и состава материала с его свойствами. Поэтому необходима разработка количественной теории, объясняющей изменение свойств веществ в зависимости от их химического состава и структуры. Это возможно сделать на основе периодической системы элементов Д.И. Менделеева, дальнейшей разработки периодического закона с привлечением квантовой механики и физики твердого тела.

При синтезе материалов необходимо учитывать, что создаваемые структуры не являются термодинамически стабильными. Практически всем металлическим сплавам свойственна нестабильность структуры, проявляемая при повышении температуры и обусловленная: неравномерным распределением в матрице растворенных элементов; процессами зарождения, роста и растворения выделений второй фазы; быстрым охлаждением сплава; накоплением в материале энергии за счет упругой деформации, дислокаций, точечных и плоских дефектов; наличием поверхностей раздела между фазами; миграцией включений второй фазы под действием градиентов температуры и напряжения, термодиффузии и электропереноса атомов; наличием радиационных дефектов и другими процессами.

Основным механизмом изменения микроструктуры является активированная миграция атомов, контролируемая объемной и зернограничной диффузией, процессами на когерентных поверхностях раздела, на двойниковых границах, В случае мартенситного превращения изменение микроструктуры контролируется координированным перемещением многих атомов.

72

Борьба с нестабильностью микроструктуры – это замедление кинетики процесса перехода структуры в более стабильное состояние (сопровождаемое ухудшением свойств) путем комбинирования термической обработки и деформации. Однако возможности такой стабилизации ограничены сравнительно низкими температурами эксплуатации материала.

16.2.2. Выбор основы сплава

Выбор основы сплава – одна из относительно простых задач в цепи разработки материала, так как ее решение в большинстве случаев связано с анализом осуществленных в практике разработок и достижений материаловедения. Выбор (разработка) нового материала – это всегда компромисс: желаемого и возможного, основных и ограничивающих факторов (стоимость, технологичность), опыта применения и возможности замены. Материал должен иметь максимально простой состав и низкую стоимость. Известно, что чем сложнее состав, тем ниже технологичность и выше стоимость. Базовой основой при синтезе материалов являются металлические многокомпонентные системы с граничными растворами переменной концентрации компонентов и промежуточными фазами разной природы. Такие системы давно служили (и сейчас в большинстве случаев являются) базой для модификации существующих и разработки новых разнообразных конструкционных материалов – от обычных деформируемых или фасонно-литейных сплавов, подвергаемых упрочняющей термической обработке, и до направленно закристаллизованных эвтектик. Важным методом в разработке новых сплавов с улучшенными технологическими и эксплуатационными свойствами является изучение фазовых равновесий в многокомпонентных металлических системах и построение их диаграмм состояния.

Основой сплава может быть чистый (базовый) металл, по концентрации составляющий не менее 50 % состава сплава, но чаще – это сплав из двух (хромистые стали) или более (хромоникелевые стали) базовых компонентов. Основа в перспективе должна позволить создать сплав, удовлетворяющий основным требованиям к

73

свойствам. При этом необходимо помнить, что свойства зависят от состава, фазового состояния, микроструктуры. Чаще всего в качестве основы рассматривают существующие сплавы, т.е. учитывается опыт применения материалов в том или ином техническом направлении новой техники, их стоимость и технологичность.

Существует, по меньшей мере, три технологические схемы получения новых материалов. Как было показано на рис. 6.11, первая схема (левая) основана на классическом подходе, включающем плавление и затвердевание расплава с последующими термомеханическими обработками (МТМО) литого материала и, при необходимости, дополнительной финишной технологией модифицирования поверхностных слоев материала (изделия) путем химикотермической обработки (при традиционном подходе) или радиационным воздействием. Вторая технологическая схема (в центре рисунка) основана на смешении веществ (порошков, нанокристаллов и др.) с последующим силовым и термическим воздействием для их компактизации и стабилизации структуры. В этом случае тоже часто применяют финишное модифицирование поверхностных слоев. Третья технологическая схема (правая) показывает примеры реализации принципа одновременного создания (конструирования) материала и изделия. Это можно осуществить путем поатомной сборки материала методами нанотехнологии, нанесения покрытий, включая многослойные, и при изготовлении композитов.

Рассмотрим некоторые примеры выбора основы сплава.

Материал оболочки ТВЭЛа реактора на тепловых нейтро-

нах типа ВВЭР. Материал оболочки ТВЭЛа должен удовлетворять ряду требований к основным рабочим свойствам. Но наиболее важным или главным с позиций физики реактора является сечение захвата тепловых нейтронов – оно должно быть минимальным при прочих равных условиях, что позволяет использовать менее обогащенное делящимся элементом ядерное топливо. Этому требованию, как видно в табл. 16.5, могут удовлетворять Be, Mg, Zr, графит.

1 Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. С. 339.

74

 

 

 

 

Таблица 16.5

 

Сечения поглощения нейтронов, мбарн

 

 

 

 

 

 

 

 

Элемент

 

Энергия нейтронов

 

 

 

Е = 1 кэВ

Е = 0,1 МэВ

Е = 14 МэВ

Тепловая

 

C

0,5

4,5

 

N

0,25

0,1

1780

 

O

0,1

0,2

 

Na

7–125

1,0

0,2

490

 

Mg

0,5

10р

0,2

59

 

Al

1,0

8

1,0

215

 

Si

2

0,7

130

 

K

0,7

0,7

1970

 

Са

5,0

0,2

430

 

Sc

102

15

1-5

24000

 

V

50

12

1-3

4700

 

Ti

5

5600

 

Cr

102

30–40

1,0

2900

 

Mn

1,5 102

12

0,1

12600

 

Fe

2 102

12

0,8

2430

 

Ni

25

14

3

4500

 

Nb

1,1 103

102

0,8

1100

 

Y

60

40

0,3

1380

 

Zr

40

30

1,0

180

 

Mo

8 102

102

2400

 

Hf

8 103

 

10

115000

 

Ta

104

 

5

21300

 

W

3 103

 

11

19200

 

Li

67000

 

Be

9

 

B

754000

 

Kr

31000

 

Cd

2537000

 

Xe

35000

 

Sm

5828000

 

Eu

4406000

 

Gd

4660000

 

Dy

936000

 

75

Бериллий относится к группе дорогостоящих металлов, Zr – относительно недорогих, а графит, Аl и Mg – дешевых, т.е. лучшие по стоимости – это Al, Mg, графит. Действительно, конструктивные элементы активной зоны многих исследовательских и ряда энергетических реакторов (так как рабочие температуры не превышают 100 °С) изготовлены из материалов, созданных на основе алюминия и магния. С позиций жаропрочности лучшие Zr и графит, а с учетом технологичности в ВВЭР (и РБМК), работающих при относительно высоких (около 300 °С) температурах теплоносителя, для оболочек твэлов применяют сплавы циркония. Графит (в качестве замедлителя нейтронов) используют в реакторах типа РБМК.

Применительно к конструктивным элементам ядерно-энергети- ческих стационарных и транспортных установок (и ТЯР) перспективными для основы сплава или компонентов основы могут быть и такие элементы, как Ti, Fe, Ni, Cr, Nb, V, Mo, W и ряд других.

Оболочка ТВЭЛа реактора на быстрых нейтронах. Одной из основных характеристик материала оболочки, работающей при температурах до 600–650 °С, является жаропрочность. Это значит, что материал должен иметь высокие Тпл и Трекр, пределы ползучести и длительной прочности при относительно высоких характеристиках пластичности и вязкости разрушения. Обычно максимальную рабочую температуру выбирают на 100 °С ниже температуры рек-

ристаллизации или фазового превращения (Траб 0,4Тпл или Тф.п). Для примера можно привести максимальные рабочие температуры

для сплавов на основе ряда металлов: Mg – 90 °С, Al – 100 °С,-Ti – 300 °С (имеет фазовое превращение), -Zr – 300 °С (имеет фазовое превращение), V – 600 °С, Cr – 590°С, -Fe – 450 °С (имеет фазовое превращение), Ni – 400 °С, Nb – 800 °С, Be – 350 °С.

С учетом совокупности свойств для оболочек твэлов быстрых реакторов используют обычно сплавы на основе железа, т.е. хромоникелевые и хромистые стали.

Выбор элементов для основы сплава — это начало сложного процесса разработки материала. Последующие этапы разработки включают выбор легирующих элементов и всего легирующего комплекса.

76

16.2.3. Выбор легирующих элементов

Процесс выбора легирующих элементов основан на знаниях, накопленных в областях физики и химии твердого тела, теоретического металловедения (материаловедения) и физикохимии. Необходимо использовать достижения науки для прогнозирования поведения и влияния на свойства каждого легирующего элемента в основе будущего сплава. В этой связи важно знать предельные возможности легирования и обработки сплавов с точки зрения изменения свойств исходного материала (основы).

Прежде чем рассматривать этапы выбора легирующих элементов, необходимо сделать одно важное замечание. Часто малые количества легирующих элементов называют примесями. В металловедении это не принято. Независимо от количества, легирующим элементом называют химический элемент, специально вводимый в

основу с той или иной целью. В случае малых концентраций (около 0,1 %) специально вводимых в сплав химических элементов процесс называют микролегированием. Примесью является химический элемент, оказавшийся в основе сплава (в легирующем элементе) в силу определенных обстоятельств, к числу которых отнесем попадание нежелательных элементов:

-из руды (сопутствующие примеси, например S и Р в сталях, или постоянные примеси, близкие по химическим свойствам элементы, например Hf в Zr);

-скрытые примеси (O, N, H, C), попадающие в сплав при его переделах;

-различные случайные примеси, попадающие в сплав при нарушениях технологии получения или обработки материала.

Основной принцип выбора легирующих элементов состоит в том, чтобы в конечном итоге легирующий элемент влиял на свойства основы, изменяя их в направлении приближения к требованиям (основным или ограничивающим), сформулированным к свойствам материала.

Последовательность выбора легирующих элементов обычно начинается с анализа теоретических разработок физики и химии твердого тела и теоретического материаловедения по легированию.

77

Важное место при этом необходимо уделить изучению результатов физико-химического анализа различных систем химических элементов таблицы Д.И. Менделеева (диаграммам состояния систем).

Анализ теоретических представлений по легированию. При выборе легирующих элементов можно использовать несколько подходов. Во-первых, применить традиционный метод проб и ошибок, т.е. эмпирический метод подбора наиболее удачного состава материала. Однако это весьма длительный способ разработки материала.

Во-вторых, опираясь на достижения физики и химии твердого тела и металлов1, попытаться предсказать наиболее вероятные составы материала. Однако в настоящее время отсутствует физическая теория сплавов. Электронная теория металлов, основанная на представлениях о кристаллической структуре и электронном строении атомов, может дать весьма ограниченные рекомендации и только для простейших металлических систем. В частности, на основе представлений о соотношении атомных размеров (атомных объемов) можно с вероятностью около 50 % предсказать оценку взаимной растворимости элементов. Опираясь на представления об электронной концентрации, можно предсказать возможность образования фаз Юм–Розери (электронных соединений). Используя представления об электроотрицательности элементов, удается оценить склонность элементов к образованию химических соединений.

В-третьих, обобщая опыт физико-химического анализа соотношений между составом материалов и измеренными свойствами равновесных систем элементов, можно предсказать направления поиска необходимых легирующих элементов. Для этого необходимо знать двух-, трех- и многокомпонентные диаграммы состояния систем основного химического элемента с легирующими. Строго говоря, достаточно иметь участки диаграмм состояния, примыкающие к основному элементу сплава (метасистемы). При этом важно знать растворимость элемента, температуру фазовых превращений, возможные фазы (соединения) в системе. Наибольшую

1 Физическое материаловедение. Т. 1. – М.: МИФИ, 2007. Гл. 3.

78

ценность для выбора легирующего элемента представляет наличие диаграмм «состав–свойство».

При легировании принципиально возможны три варианта получения кристаллической структуры: если легирующий элемент растворим (имеет полную или ограниченную растворимость) в основе сплава, то в области растворимости сплав будет иметь кристаллическую решетку основы; если легирующий элемент и основа образуют соединения, то в результате легирования создается новая кристаллическая решетка; если легирующий элемент не растворим в основе, то, как правило, образует с элементом основы эвтектику. В этом случае в бинарных системах легирующий элемент сохраняет свою кристаллическую решетку в сплаве.

Нерастворимость компонентов или их механическая смесь (расслоение в твердом состоянии) образуется в случае неспособности элементов к взаимному растворению в твердом состоянии или при отсутствии химического взаимодействия с образованием промежуточной фазы. Типичное расслоение в твердом состоянии – образование эвтектоида. В отличие от механической смеси фаз твердый раствор является однофазным и существует в определенном интервале концентраций компонентов. Различают твердые растворы замещения, внедрения и вычитания. При определенных условиях компоненты образуют непрерывный ряд твердых растворов, т.е. такое состояние сплава, в котором взаимная растворимость между компонентами возможна при любых соотношениях их концентрации.

Напомним известные в металловедении необходимые условия образования непрерывных рядов твердых растворов: 1) радиусы атомов легирующего элемента и основы отличаются не более чем на 10–15 % (есть исключения: Ni, Fe, Cr имеют приблизительно одинаковые атомные радиусы, но если Cu–Ni образуют непрерывные ряды твердых растворов, то Cu–Fe имеют неполное смешение в жидком состоянии); 2) элементы имеют изоморфные кристаллические решетки; 3) атомы имеют близкие электрохимические свойства, т.е. близкие значения электроотрицательности.

Твердый раствор называют неограниченным, если у него в области между линиями солидуса и ликвидуса отсутствуют особые точки. В отличие от неограниченных ограниченные твердые рас-

79

творы характеризуются определенной растворимостью одного компонента в другом. Промежуточные фазы, интерметаллические и химические соединения – различные названия структурного состояния (новой фазы) взаимодействующих элементов, образующих кристаллическую структуру, отличную от структуры взаимодействующих компонентов. В отечественной литературе различают два понятия: интерметаллические соединения – соединения металлов

(не всегда имеющие металлическую связь) и металлические соединения, характеризующиеся металлической связью (не всегда содержащие металлические элементы, например ZrH2). Для простоты все виды промежуточных фаз будем называть химическими соединениями и приведем их известную классификацию1.

1.Химические соединения с нормальной валентностью. Эти соединения образуются между металлами с резко выраженными металлическими свойствами и элементами, обладающими свойствами как металлов, так и металлоидов. Примеры: соединения магния с элементами IV и V групп Периодической системы – Mg2Si, Mg3Sb2.

2.«Электронные» соединения (фазы Юм–Розери), характеризующиеся определенным отношением числа валентных электронов

кчислу атомов образующих их металлов, т.е. электронной концентрацией. Эти отношения равны 2/3 (для фазы с ОЦК решеткой в

системе Cu–Zn), 21/13 ( -фаза со сложной кубической решеткой в той же системе) и 7/4 ( -фаза с гексагональной решеткой в той же системе). Напомним2, что при этих отношениях концентраций поверхность Ферми касается границы первой зоны Бриллюэна (1,48 для ОЦК металлов, плоскость первого касания <110>, и 1,362 для ГЦК металлов, плоскость первого касания <111>) и образуются соединения. При значениях электронных концентраций ниже этих значений элементы взаимно растворимы.

3. Фазы Лавеса типа АВ2 с гранецентрированной (типа MgCu2) или гексагональной (типа MgZn2, MgNi2) решетками. Эти соединения образуются при определенном отношении атомных радиусов металлов А и В (rA /rB = 1,09–1,34). Примеры: Cu2Be, W2Zr, CoMg2.

1Физическое материаловедение. Т. 1. – М.: МИФИ, 2007. П. 3.3.

2Там же, п. 3.2.2.

80