Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Калин Физическое материаловедение Том 5 2008

.pdf
Скачиваний:
1037
Добавлен:
16.08.2013
Размер:
8.51 Mб
Скачать

термоядерного реактора тоже должен быть жаропрочным, радиа- ционно-стойким, коррозионно-стойким и иметь минимальное газовыделение для поддержания глубокого вакуума в камере.

Таким образом, анализ условий работы завершают характеристикой выбираемого (разрабатываемого) материала, на основании которой формируют требование к свойствам материала, необходимым для обеспечения каждой эксплуатационной характеристики.

Свойства материалов. Понятие «свойство» – это философская категория, выражающая такую сторону рассматриваемого предмета, которая обусловливает его различие или общность с другим предметом (или предметами) и обнаруживается в его отношении с ним (с ними). Следовательно, свойство есть присущая данному материалу характеристика, определяемая в результате определенного тестирования (испытания, измерения) материала. Вся совокупность свойств материала в зависимости от природы (типа межатомной связи) и структуры делится на группы. Применительно к физическому материаловедению выделим наиболее значимые группы, а именно: физические, механические (физико-механические), физи- ко-химические (термодинамические) и технико-экономические.

Совокупность физических, механических и физико-химических свойств материалов можно условно разбить на две группы: струк- турно-чувствительные и структурно-нечувствительные свойства. Физические и физико-химические свойства материалов определяются в основном их природой, т.е. электронным строением атомов и их взаимодействием, и практически слабо зависят или вовсе не зависят от микроструктуры. Исключение составляют ферромагнетики, доменная структура которых связана с микроструктурой. В этой связи для изменения физических и физико-химических свойств необходимо провести действие на уровне электронных состояний материала. Это можно осуществить, например, путем легирования, причем наиболее чувствительными к изменению электронного состояния являются полупроводники и изоляторы и менее чувствительны – металлы.

Механические свойства, за исключением упругих констант (см. далее), являются структурно-чувствительными и, следовательно, изменение микроструктуры сопровождается изменением всего

41

комплекса механических свойств. Поэтому при создании нового материала важным, наряду с выбором заданного состава, является формирование оптимального (необходимого) СФС материала.

Физические свойства. Физические свойства проявляются при тестировании как результат процессов, протекающих в электронной подсистеме, и ее взаимодействия с атомами (ионами) и зависят от строения атома (числа электронов в атоме) вещества. Существует определенное классифицирование физических свойств веществ на тепловые (теплофизические), электрические, магнитные, ядерные, оптические и другие, причем необходимо подчеркнуть тесную взаимосвязь тепловых и термодинамических свойств.

Тепловые свойства. Наиболее важными тепловыми (и термодинамическими) свойствами материалов являются теплоемкость, теплопроводность, температуропроводность, термическое расширение, теплоты (энтальпия) и температуры фазовых превращений, внутренняя энергия, энтропия, энергии активации тех или иных процессов переноса и др.

Напомним, что удельная теплоемкость это количество теплоты, необходимое для нагревания 1 г вещества на 1 К. Для каждо-

го вещества существуют две характерные величины удельной теплоемкости – Ср и Сv, т.е. теплоемкость при постоянном давлении и постоянном объеме, причем Ср Сv. Обычно используют Ср (Дж/кг·К). По сути, теплоемкость характеризует отношение количества теплоты, сообщенного телу, к соответствующему повышению температуры. Физический параметр, характеризующий способность вещества проводить теплоту от нагретой части к холод-

ной, называют коэффициентом теплопроводности (Вт/м К), который численно равен количеству тепла, прошедшему через еди-

ницу площади в единицу времени при единичном градиенте темпе-

ратуры. Параметр, характеризующий способность тела изменять линейные размеры при нагревании на 1 градус, называют темпера-

турным коэффициентом линейного расширения (средним в интер-

вале температуры) (1/К). Температуропроводность есть параметр а, связывающий теплоемкость, теплопроводность и плотность материала (кг/м3) следующим выражением:

42

a

 

.

(16.6)

 

Cp

 

 

Если рассматривать твердое тело как термодинамическую систему, то его состояние можно описать функциями (параметрами) состояния, т.е. такими физическими характеристиками системы, изменение которых при переходе системы из одного термодинамического состояния в другое целиком определяется значениями па-

раметров начального и конечного состояний и не зависит от вида процесса этого перехода. Напомним, что к числу функций состояния относят1 внутреннюю энергию U, энтропию S, энтальпию H, свободную энергию Гельмгольца F, свободную энергию Гиббса G. Абсолютные значения внутренней энергии и других функций состояния определить нельзя, и поэтому используют только величину разности количества внутренней энергии (энтальпии, свободной энергии и др.) двух состояний системы – U, H, F, G (Дж/кг или Дж/моль).

Внутренняя энергия (изохорно-изоэнтропийный потенциал) – это энергия, заключенная в твердом теле и имеющая своей причиной движение молекул, атомов и их составных частей; она равна полной энергии тела за вычетом кинетической и потенциальной энергий системы (тела) как целого и зависит от объема тела V, давления p и температуры T. Энтальпия (изобарно-изоэнтропийный потенциал) – это теплота процесса, протекающего при постоянном давлении, равная сумме H = U + pV. Энтропия – это функция состояния системы, полный дифференциал которой определяется как отношение бесконечно малого количества теплоты, сообщенной системе, к температуре системы, т.е. dS = Q/T (Дж/К). Свободная энергия Гельмгольца (изохорно-изотермный потенциал) равна разности F = U TS. Свободная энергия Гиббса (изобарноизотермный потенциал) равна разности G = H TS. Взаимосвязь функций состояния можно представить в виде схемы, представленной на рис. 16.3.

1 Физическое материаловедение. Т. 2. – М.: МИФИ, 2007. П. 4.1.

43

Рис. 16.3. Графическое представление функций состояния

К числу теплофизических свойств материалов отнесем и температуры: плавления, фазового превращения, кипения, испарения и

др. Температура – это термодинамическая величина, характеризующая состояние вещества при термодинамическом равновесии, причем абсолютная температура пропорциональна средней кинетической энергии

частиц вещества.

Среди многих физических свойств, необходимых для выбора и/или разработки конструкционного материала, рассмотрим только некоторые, а именно ядерные, электрические и магнитные свойства.

Ядерные свойства. В соответствии с принятой терминологией атомы вещества с данным числом протонов и нейтронов в ядре принято называть нуклидами. Нуклиды с одинаковым числом протонов (т.е. принадлежащие одному химическому элементу) называют изотопами. Изотопы могут быть стабильными и радиоактивными. Для характеристики нуклидов используют: зарядовое число Z (число протонов в ядре), массовое число (атомный вес) А, период полураспада (для радиоактивных) изотопов Т1/2 (с), изотопный состав атома и тип распада для радиоактивных изотопов. Применительно к взаимодействию с различными видами излучения важными характеристиками являются сечения взаимодействия ядер (атомов) с излучением. Применительно к прохождению нейтронов через вещество различают сечения захвата нейтронов с указанием типа последующей после захвата реакции: (n, ) – радиационный захват,(n,р), (n, ) и др., сечение упругого (и неупругого) рассеяния нейтронов (n,n) или среднее сечение рассеяния нейтронов рас, сечение поглощения нейтронов пог – как некая сумма сечений реакций взаимодействия нейтрона с ядрами в веществе. Все виды сечений измеряются в барнах, причем 1 б = 10–28 м2. Поэтому величины сечений захвата, рассеяния и поглощения нейтронов являются константами заданного материала, характеризующими его ядерно-физические свойства, необходимые для выбора материалов конструктивных элементов, работающих в условиях радиационного воздействия.

44

Электрические и магнитные свойства материалов являются важной характеристикой специальных функциональных материалов. Применительно к конструкционным материалам важно знать такие характеристики, как электропроводность, магнитная восприимчивость и проницаемость, коэрцитивная сила, играющие определенную роль при эксплуатации конструкционных материалов в электромагнитных полях.

Электропроводность или обратная ей величина – удельное электросопротивление характеризуют степень взаимодействия электронов с ионами кристаллической решетки и зависят от сингонии (вида) кристалла, состава конкретного сплава и температуры. Поэтому величина, например, удельного электросопротивления является важной характеристикой состояния (чистоты) материала, его магнитной структуры.

Электросопротивление – это характеристика проводника, чис-

ленно равная отношению электрического напряжения на концах проводника к силе тока через проводник. Удельное электросопро-

тивление – это электрическое сопротивление проводника единичной длины при единичной площади поперечного сечения и измеряется в единицах Ом·м.

Дефекты кристаллической структуры (дислокации, вакансии, примеси и др.) обычно увеличивают удельное электросопротивление материала. При фазовых превращениях, процессах упорядочения и разупорядочения удельное электросопротивление изменяется существенно, что позволяет по этим изменениям судить о характере превращений в материалах. Электросопротивление чувствительно к внешнему воздействию на материал. Например, при гидростатическом давлении электросопротивление материалов изменяется вследствие ряда процессов, влияющих как на состояние электронной подсистемы, так и на состояние кристаллической решетки. В результате электросопротивление может как уменьшаться, так и увеличиваться. Упругая и пластическая деформация обычно увеличивают удельное электросопротивление вследствие искажения решетки и накопления деформационных дефектов.

Магнитная восприимчивость характеризует способность вещества (магнетика) намагничиваться в магнитном поле. Интенсив-

45

ность намагничивания (I) в не слишком сильных полях с напряженностью магнитного поля (Н) связаны между собой следующей зависимостью:

I = H,

(16.7)

где – магнитная восприимчивость – величина безразмерная, так как I и H измеряются в одинаковых единицах – А/м.

При внесении магнетика во внешнее магнитное поле с индукцией В0 внутри него возникает собственное поле с индукцией Ввн,

причем

 

Ввн = 0I,

(16.8)

где 0 – магнитная постоянная, равная 4·10–7 Гн/м.

Вектор индукции результирующего магнитного поля в неферромагнетиках B = 0(H+I). Для однородного и изотропного вещества B = 0 H, где относительная магнитная проницаемость магнетика, показывающая, во сколько раз магнитная индукция в рассматриваемой точке поля в данном веществе больше, чем в вакууме. Отсюда видно, что связь магнитной восприимчивости с относительной магнитной проницаемостью следующая: = – 1.

Все магнетики в зависимости от знака и значения модуля молярной магнитной восприимчивости делятся на три группы: диамагнетики, у которых 0 (порядка 10–8–10–7м3/кмоль); парамагнетики, у которых 0 (порядка 10–7–10–6 м3/кмоль); ферромагнетики, у которых 0 (порядка 103 м3/кмоль). Кроме этого, нужно знать, что в отличие от диа- и парамагнетиков, у которых магнитная восприимчивость постоянная, у ферромагнетиков она является функцией напряженности магнитного поля. В технике легко намагничиваемые материалы (магнитомягкие) характеризуются относительной магнитной проницаемостью – = В/Н.

Таким образом, при выборе или разработке нового материала для эксплуатации изделия в магнитных полях, например, материала корпуса и первой стенки термоядерного реактора с магнитным удержанием плазмы, необходимо учитывать такие свойства, как магнитная восприимчивость или проницаемость материала.

Механические свойства. В зависимости от вида нагружения (растяжение, сжатие, изгиб, кручение, срез) и условий воздействия

46

(температура, скорость, периодичность, время нагружения) материалы принято характеризовать различными мерами сопротивления деформации и разрушению – характеристиками механических свойств. Механические свойства используют для описания поведения материала в нагруженном состоянии, его работоспособности, расчета размеров деталей. В качестве величин, описывающих механические свойства, применяют ряд следующих понятий.

Напряжение мера внутренних сил, возникающих в деформи-

руемом теле под влиянием внешнего или внутреннего воздействия,

т.е. это сила F, отнесенная к единице исходной площади нагружения (деформирования) S0 ( = F/S0), и измеряется в паскалях (Па = Н/м2).

Деформация – это характеристика изменения размеров и фор-

мы тела. Относительная деформация при растяжении = l/l0, гдеl – прирост исходной длины образца l0 при деформации. Так же определяется и относительное удлинение . Относительное уменьшение поперечного сечения после разрыва называют относительным сужением поперечного сечения = (S0 Sk)/S0.

Всю совокупность механических свойств условно можно разделить на три группы.

Первая группа содержит комплекс характеристик, определяемых при однократном кратковременном нагружении выбранного об-

разца материала. К ним относятся упругие свойства: модуль нормальной упругости Е (коэффициент пропорциональности между нормальным напряжением и относительным удлинением, т.е.= Е , измеряется в ГПа), модуль сдвига G (коэффициент пропорциональности между касательным напряжением и относительным сдвигом) и коэффициент Пуассона (абсолютное значение отношения поперечной деформации к продольной). Сопротивление малым упругопластическим деформациям определяется пределами

упругости упр (напряжение, при нагружении выше которого начинается пластическая деформация – МПа), пропорциональности

пц (напряжение, при нагружении до которого деформации возрастают пропорционально напряжениям – МПа) и текучести (ус-

ловный) 0,2 (напряжение, при котором остаточная деформация

47

после снятия нагрузки составляет 0,2 % – МПа). Временное со-

противление (предел прочности) в (напряжение, соответствую-

щее наибольшей нагрузке, выдерживаемой образцом при нагрузке –

МПа), сопротивление срезу ср (МПа) и сдвигу сдв (МПа), твердость вдавливанием индентора (например, стального шарика – по Бринеллю) НВ (МПа), царапаньем (по шкале Мооса) являются характеристиками материала в области больших деформаций вплоть до разрушения.

Микротвердость H (МПа) – это сопротивление вдавливанию алмазного индентора при очень маленьких нагрузках с получением

малых глубин и размеров отпечатка.

Степень деформируемости характеризуется относительным удлинением (общим 0 или равномерным р, которые определяются отношением абсолютного остаточного удлинения образца после разрыва к его начальной длине и измеряются в %) и относительным сужением сечения деформируемого образца после разрыва (отношение уменьшения площади поперечного сечения образца после разрыва к начальной площади, измеряемое в %).

Вторая группа включает свойства и параметры, оценивающие сопротивление материалов переменным и длительным статиче-

ским нагрузкам. При многократном нагружении определяется пре-

дел выносливости материала 1,N. Различают многоцикловую и малоцикловую усталость по числу циклов (базе) нагружения материала. База многоцикловой усталости N = 107–2·107 циклов, а малоцикловой – N < 5·104. Испытания на малоцикловую усталость обычно проводят при пониженных частотах нагружения ( = 0,1–5 Гц). Критериями сопротивления материала длительным статическим нагрузкам при повышенных температурах являются предел ползу-

чести пол или предел длительной прочности дл. Базой при данном испытании является время. Пределом ползучести называют мак-

симальное напряжение, которое при рабочей температуре вызывает заданную деформацию (обычно до 1 %) на определенной базе,

например 104 ч, т.е. пол необходимо записывать как 1T%р . Пределом длительной прочности называют максимальное напряжение, которое при заданной температуре вызывает разрушение материа-

48

ла на базе определенного времени, например 104 ч, т.е. дл необхо-

димо записывать как Tр4 .

10 ч

Третью группу составляют характеристики разрушения, которые обычно определяются на образцах с заранее выращенной начальной трещиной и оцениваются следующими основными пара-

метрами: K1C вязкость разрушения ( МПа м ), или критический коэффициент интенсивности напряжений при плоской деформа-

ции; KC – вязкость разрушения (МПа м ), или критический коэффициент интенсивности напряжений при плосконапряженном состоянии; aк работа разрушения, или удельная ударная вязкость (Дж/м2), причем для образца с трещиной удельную работу разрушения характеризуют коэффициентом КСТ (ударная вязкость, определенная на образце с трещиной, Дж/м2), а образца с кольцевым надрезом – КСU (ударная вязкость, определенная на образце с концентратором напряжений типа U, Дж/м2); при усталостных испытаниях для характеристики разрушения используют параметр СРТУ – скорость роста трещины усталости при заданном разма-

хе интенсивности напряжений K.

Как было сказано выше, среди механических свойств только упругие свойства металлических материалов являются структурно нечувствительными характеристиками, связанными с параметрами кристаллической решетки (энергией межатомной связи) и практически не зависящими от режимов термомеханической обработки, если последние не вызывают аллотропических превращений. Для практически изотропных металлических поликристаллов упругие константы связаны соотношением E = 2G(1+ ). Упругие свойства определяют двумя способами: при статических испытаниях (Eст, Gст) или динамическим методом (Eдин, Gдин) по резонансной частоте колебаний тонкого стержня под действием малых напряжений. Значения упругих констант, определенных обоими методами, совпадают при комнатной температуре, но с ростом температуры измерений при статических испытаниях сказывается влияние деформации ползучести (заниженные значения упругих характеристик).

Все другие механические свойства в большей или меньшей степени структурно чувствительны и анизотропны. Обычно уровень

49

прочности, пластичности, выносливости и характеристик разрушения в продольном направлении (относительно оси деформации) полуфабриката выше, чем в поперечном. Однако возможна и «обратная» анизотропия, например, для некоторых титановых сплавов. Важно подчеркнуть, что между некоторыми характеристиками механических свойств экспериментально установлены зависимости, позволяющие с достаточной степенью точности оценивать предел прочности материала по значениям твердости, а сопротивление срезу – по пределу текучести и др. Существуют корреляционные связи между пределом выносливости и пределом прочности, а также между различными характеристиками разрушения.

Механические свойства определяют термомеханическое поведение элементов различных конструкций, конструктивную прочность и в значительной степени работоспособность и живучесть материалов, долговечность и надежность элементов конструкции.

Конструктивная прочность – это прочности конкретной конструкции.

Надежность изделий свойство изделия выполнить заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени или требуемой наработки, а долговечность — свойство изделия сохранять работоспособность до предельного состояния (невозможности его дальнейшей эксплуатации). Таким предельным состоянием материала может быть разрушение, потеря формы или размера, потеря устойчивости, износ, накопление внутренних дефектов. Понятие долговечности отличается от живучести, под которой понимают способность материала работать в поврежденном состоянии после образования трещины.

Работоспособность конструктивных элементов энергонапряженной техники в значительной степени определяется эксплуатационными условиями, а именно: временными зависимостями и значениями напряжений, деформаций и температур, наличием агрессивной среды, а в ряде случаев – радиационного излучения. Возможные виды деформирования конструктивных элементов ЯЭУ представлены в табл. 16.1.

50