Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria.docx
Скачиваний:
440
Добавлен:
22.05.2015
Размер:
2.7 Mб
Скачать

Замечания

Колебательный контур, работающий в режиме резонанса напряжений, не является усилителем мощности. Повышенные напряжения, возникающие на его элементах, возникают за счет заряда конденсатора в первую четверть периода после включения и исчезают при отборе от контура большой мощности.

Явление резонанса напряжений необходимо учитывать при разработке аппаратуры. Повышенное напряжение может повредить не рассчитаные на него элементы.

Применение

При совпадении частоты генератора и собственных колебаний контура на катушке появляется напряжение, более высокое, чем на клеммах генератора. Это можно использовать в удвоителях напряжений, работающих на высокоомную нагрузку, или полосовых фильтрах, реагирующих на определенную частоту.

12 .Законы Ома для цепей синусоидального тока

Множитель в уравнении представляет собой комплекс, имеет размерность сопротивления и обозначается через Z. Его называют комплексным сопротивлением:

Как и всякий комплекс, Z можно записать в показательной форме. Модуль комплексного сопротивления принято обозначать через z. Точку над Z не ставят, потому что принято ставить ее только над такими комплексными величинами, которые отображают синусоидальные функции времени.

Уравнение (3.30) можно записать так: Разделим обе его части на и перейдем от комплексных амплитудк комплексам действующих значенийи Е:

Уравнение (3.30) представляет собой закон Ома для цепи синусоидального тока.

В общем случае Z имеет некоторую действительную часть R и некоторую мнимую часть 

где R — активное сопротивление; X — реактивное сопротивление. Для схемы (см. рис. 3.9) реактивное сопротивление

13. Разветвленная цепь синусоидального тока. Резонанс токов

Расчет разветвленной цепи синусоидального тока.

1. Cчитая, что индуктивная связь между катушками отсутствует:

 

1.1 составить систему уравнений в символической форме по методу контурных токов;

1.2 преобразовать схему до двух контуров;

1.3 в преобразованной схеме рассчитать токи по методу узловых потенциалов;

1.4 рассчитать ток в третьей ветви схемы (в ветви, обозначения компонентов которой имеют индекс 3) методом эквивалентного генератора и записать его мгновенное значение;

1.5 на одной координатной плоскости построить графики иили;

1.6 рассчитать показание ваттметра;

1.7 составить баланс активных и реактивных мощностей;

1.8 определить погрешность расчета;

1.9 построить лучевую диаграмму токов и топографическую диаграмму напряжений для преобразованной схемы.

Резонанс токов — резонанс, происходящий в параллельном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.

Описание явления

Пусть имеется колебательный контур с частотой собственных колебаний a, и пусть он подключен к генератору переменного тока такой же частоты f.

В момент подключения конденсатор заряжается от источника. После чего он начинает разряжаться на катушку, причем разряжается с такой же скоростью, с какой убывает напряжение на генераторе. Через некоторое время энергия конденсатора полностью переходит в энергию магнитного поля катушки. Напряжение на клеммах генератора в этот момент равно нулю.

Далее магнитное поле катушки начинает убывать, так как не может существовать стационарно — на выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе, причем с той же скоростью, с какой катушка заряжает конденсатор. Но ток от генератора не может течь через колебательный контур — как только на клеммах генератора появляется напряжение, точно такое же напряжение появляется на выводах конденсатора вследствие перезаряда его катушкой. Напряжения конденсатора и генератора друг друга компенсируют.

Далее энергия магнитного поля катушки полностью переходит в энергию электрического поля конденсатора. Напряжение генератора в этот момент достигает максимума. Далее конденсатор разряжается на катушку, цикл повторяется в обратном направлении. В результате, в колебательном контуре циркулируют весьма большие токи, но за его пределы не выходят — выходить им мешает точно такое же, только противоположно направленное напряжение на генераторе. Большой ток от генератора течет через контур только короткое время после включения, когда заряжается конденсатор. Далее генератор работает почти вхолостую — как только на его клеммах появляется напряжение, точно такое же противоположно направленное напряжение появляется на конденсаторе и не пропускает ток от внешнего источника через контур.

Вышесказанное справедливо для контура с очень хорошей добротностью (низкими потерями энергии за цикл).

Ситуация изменится, если отбирать от контура во время его работы некоторую мощность. Тогда за цикл часть энергии контура будет теряться и конденсатор будет перезаряжаться контурной катушкой до меньшего напряжения, чем напряжение внешнего генератора. В этом случае генератор будет дозаряжать конденсатор, компенсируя таким образом потери за цикл. Через контур потечет переменный ток, который, однако, может быть меньше того, что циркулирует в самом контуре.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]