Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria.docx
Скачиваний:
440
Добавлен:
22.05.2015
Размер:
2.7 Mб
Скачать

Общее понятие о переменном токе

Так как переменный ток в общем случае меняется в электрической цепи не только по величине, но и по направлению, то одно из направлений переменного тока в цепи считают условно положительным, а другое, противоположное первому, условно отрицательным. В соответствии с этим и величину мгновенного значения переменного тока в первом случае считают положительной, а во втором случае — отрицательной.

Переменный ток — величина алгебраическая, знак его определяется тем, в каком направлении в рассматриваемый момент времени протекает ток в цепи — в положительном или отрицательном.

Величина переменного тока, соответствующая данному моменту времени, называется мгновенным значением переменного тока.

Максимальное мгновенное значение переменного тока, которого он достигает в процессе своего изменения, называется амплитудой тока .

График зависимости переменного тока от времени называется развёрнутой диаграммой переменного тока.

Развёрнутая диаграмма переменного синусоидального тока

На рисунке приведена развёрнутая диаграмма переменного тока, изменяющегося с течением времени по величине и направлению. На горизонтальной оси отложены в определённом масштабе отрезки времени, а по вертикальной оси — величины тока, вверх — от начальной точки  — положительные, вниз — отрицательные. Часть развёрнутой диаграммы тока, расположенная выше оси времени , характеризует изменение положительных величин во времени, а часть, расположенная ниже оси времени , — изменение отрицательных величин.

В начальный момент времени ток равен нулю . Затем он с течением времени растёт в положительном направлении, в момент времени достигает максимального значения, после чего убывает по величине и в момент времени становится равным нулю. Затем, пройдя через нулевое значение, ток меняет свой знак на противоположный, то есть становится отрицательным, затем растёт по абсолютной величине, затем достигает максимума при , после чего убывает и при становится равным нулю.

Переменный синусоидальный ток

Колебания маятника также подчиняются закону синуса. Если записать проекцию траектории движения математического маятника на движущуюся бумажную ленту — получится синусоида.

Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по закону синуса.

Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи.

Переменный синусоидальный ток выражается формулой:

, где

 — амплитуда синусоидального тока;

 — некоторый угол, называемый фазой синусоидального тока.

Фаза синусоидального тока изменяется пропорционально времени .

Множитель , входящий в выражение фазы  — величина постоянная, называемая угловой частотой переменного тока.

Угловая частота синусоидального тока зависит от частоты этого тока и определяется формулой:

, где

 — угловая частота синусоидального тока;

 — частота синусоидального тока;

 — период синусоидального тока;

 — центральный угол окружности, выраженный в радианах.

Зависимость синусоидального тока от времени

Зависимость синусоидального тока от угла ωt

Периоду соответствует угол , половине периода угол и так далее…

Исходя из формулы , можно определить размерность угловой частоты:

, где

 — время в секундах,

 — угол в радианах, является безразмерной величиной.

Фаза синусоидального тока измеряется радианами.

1 радиан = 57°17′, угол 90° = радиан, угол 180° = радиан, угол 270° = радиан, угол 360° = радиан, где радиан;  — число «Пи», ° — угловой градус и  — угловая минута.

Формула описывает случай, когда наблюдение за изменением переменного синусоидального тока начинается с момента времени при . Если не равен нулю, тогда формула для определения мгновенного значения переменного синусоидального тока примет следующий вид:

, где

 — фаза переменного синусоидального тока;

 — угол, называемый начальной фазой переменного синусоидального тока.

Начальная фаза переменного тока 

Начальная фаза переменного тока 

Если в формуле принять , то будем иметь

и .

Начальная фаза — это фаза синусоидального тока в момент времени .

Начальная фаза переменного синусоидального тока может быть положительной или отрицательной величиной. При мгновенное значение синусоидального тока в момент времени положительно, при  — отрицательно.

Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно

, то есть равно положительной амплитуде тока.

Если начальная фаза , то ток определяется по формуле . Мгновенное значение его в момент времени равно

, то есть равно отрицательной амплитуде тока.

определения и способы представления синусоидальных ЭДС

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по синусоидальному закону, называются цепями синусоидального тока. Иногда их называют просто цепями переменного тока.

Электрические цепи, в которых значения и направления ЭДС, напряжения и тока периодически изменяются во времени по законам, отличным от синусоидального, называются цепями несинусоидального тока.

Генераторы электрических станций переменного тока устроены так, что возникающая в их обмотках ЭДС изменяется по синусоидальному закону. Синусоидальная ЭДС в линейных цепях, где содержатся резистивные, индуктивные и емкостные элементы, возбуждает ток, изменяющийся по закону синуса.

Возникающие при этом ЭДС самоиндукции в катушках и напряжения на конденсаторах, как это вытекает из выражений

е = - L

di

,    i = C

duc

,

dt

dt

также изменяются по синусоидальному закону, так как производная синусоидальной функции есть функция синусоидальная. Напряжение на резистивном элементе будет также изменяться по синусоидальному закону, так как

и = ir.

Целесообразность технического использования синусоидального тока обусловлена тем, что КПД генераторов, двигателей, трансформаторов и линий электропередачи при синусоидальной форме ЭДС, напряжения и тока получается наивысшим по сравнению с несинусоидальным током. Кроме того, при иных формах изменения тока из-за ЭДС самоиндукции могут возникать значительные перенапряжения на отдельных участках цепи. Важную роль играет и тот факт, что расчет цепей, где ЭДС, напряжение и ток изменяются синусоидально, значительно проще, чем расчет цепей, где указанные величины изменяются по несинусоидальному закону.

Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС. Для этого удобно использовать простейшую модель — рамку, вращающуюся с постоянной угловой скоростью ω в равномерном магнитном поле (рис. 2.1, а). Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции В, длине проводника l и скорости перемещения проводника относительно поля vt:

е = Blvt .

Выразив скорость vt через окружающую скорость v и угол α, получим

е = Blv sin α = Еm sin α.

Угол α равен произведению угловой скорости рамки ω на время t:

α = ωt..

Таким образом, ЭДС, возникающая в рамке, будет равна

(2.1)

е = Ет sin α = Em sin ωt.

где е - мгновенное значение ЭДС (значение ЭДС в момент времени t); Ет — амплитудное значение ЭДС (значение ЭДС в момент времени ωt + ψ = π/2), (ωt + ψ) - фаза; ψ - начальная фаза. Фаза определяет значение ЭДС в момент времени t, начальная фаза — при t = 0.

Время одного цикла называется периодом T, а число периодов в секунду — частотой f:

= 1/T.

Единицей измерения частоты является с-1, или герц (Гц). Величина ω = α/t = 2π/Т = f в электротехнике называется угловой частотой и измеряется в рад/с.

График   зависимости   ЭДС   е   от   времени   изображен   на рис, 2.1, б (сплошная линия — для ψ = 0, пунктирная — для ψ ≠ 0). Частота вращения рамки и частота ЭДС связаны между собой coотношением

ω = 2π= πn/30,

откуда

n/60,

8. Символическое представление переменного синусоидального тока

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]