Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria.docx
Скачиваний:
440
Добавлен:
22.05.2015
Размер:
2.7 Mб
Скачать

Идеальный трансформатор

У идеального трансформатора при любых сопротивлениях нагрузки отношение первичного и вторичного комплексных напряжений и отношение вторичного и первичного комплексных токов равны друг другу, и равны постоянному действительному числу:

Рисунок 4.9 - Первичная и вторичная цепи идеального трансформатора

   ,                                            (4.17)

n - коэффициент трансформации идеального трансформатора.

Входное сопротивление со стороны первичных выводов:

                                    (4.18)

больше сопротивления Ż2 в n2 раз.

Если к первичным выводам присоединено сопротивление Z1, а питание со стороны вторичных, то:

.                                                    (4.19)

Вывод: эти соотношения характеризуют трансформацию сопротивлений: Если вторичные выводы разомкнуты, Ż1вх=. Если коротко замкнуты, Ż1вх=0.

Реальный трансформатор приближается по своим свойствам к идеальному, если коэффициент магнитной связи стремится к единице, а мощность потерь к нулю.

43. Режимы работы трансформатора. Опыты холостого хода и короткого замыкания, их назначение и условия проведения

Базовые принципы действия трансформатора

Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная

Работа трансформатора основана на двух базовых принципах:

  1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле(электромагнетизм)

  2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Режимы работы трансформатора[править | править исходный текст]

1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в сердечнике.

2. Нагрузочный режим. Этот режим характеризуется работой трансформатора с подключенными источником в первичной и нагрузкой во вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.

Цель опытов. Опыты холостого хода и короткого замыкания проводятся для определения коэффициента трансформации, потерь в трансформаторе и параметров схемы замещения.

Опыт холостого хода. Для однофазного трансформатора опыт холостого хода выполняется по схеме рис. 2.11. К первичной обмотке подводится номинальное напряжение , к вторичной — подключен вольтметр , имеющий достаточно большое сопротивление. Практически можно считать, что ток .

Кроме того, в схему включены амперметр , вольтметр и ваттметр . Амперметр показывает ток холостого хода , вольтметр номинальное напряжение первичной обмотки , вольтметр —напряжение и ваттметр —мощность потерь при холостом ходе. По этим показаниям можно определить коэффициент трансформации для понижающего  трансформатора или для повышающего трансформатора. Так как нагрузка отсутствует (), то мощность, показываемая ваттметром,  — это мощность потерь в стали трансформатора (магнитопроводе).

Мощностью потерь в проводах обмоток можно пренебречь, так как при опыте холостого хода ток вторичной обмотки равен нулю, а ток в первичной обмотке — ток холостого хода составляет примерно 5 % номинального.

Можно также найти

и полное сопротивление цепи (см. рис. 2.9):

 (2.12)

Активное сопротивление цепи

и индуктивное сопротивление цепи

.

Так как практически сопротивления и , то значения и определяются из приведенных формул.

Опыт короткого замыкания. Опыт короткого замыкания выполняется по схеме, представленной на рис. 2.12, при условии, что к первичной обмотке подводится пониженное напряжение , составляющее 5—10% , а точнее, такое напряжение, при котором токи и в обмотках равны номинальным.

Вторичная обмотка трансформатора замыкается накоротко.

При этом опыте вольтметр показывает напряжение первичной обмотки , ваттметр  мощность короткого замыкания , амперметр — ток в первичной обмотке.

По этим показаниям можно определить мощность потерь в обмотках, так как потери в магнитопроводе составляют лишь 0,005 – 0,1 потерь при номинальном режиме из-за пониженного напряжения . Мощность потерь при коротком замыкании и номинальных токах

.

Кроме того, по данным этого опыта можно найти параметры упрощенной схемы замещения (рис. 2.13). Полное сопротивление

,

суммарное активное сопротивление обеих обмоток

 (2.13)

и реактивное сопротивление

.      (2.14)

На основе опытов холостого хода и короткого замыкания по формулам (2.12),(2.13),(2.14) определяются параметры схемы замещения трансформатора.

Напряжение короткого замыкания. Как следует из схемы замещения   (рис. 2.13),

.

Обычно  составляет 5—8 % :

.

Значение  указано на щитке трансформатора. Активная составляющая напряжения короткого замыкания находится по формуле

,                               (2.15)

а реактивная составляющая напряжения короткого замыкания

.                                             (2.16)

Процентные значения напряжения связаны между собой соотношением:

.                 

Опыт холостого хода (рис. 11.4, а) используют для определения коэффициента трансформации. При этом обмотку низшего напряжения подключают к устройству (потенциал — регулятор), позволяющему в широких пределах изменять напряжение, подводимое к трансформатору, а обмотку высшего напряжения размыкают.

С целью определения коэффициента трансформации к обмотке низшего напряжения достаточно подвести напряжение 0,1 UH для трансформаторов малой мощности и (0,33...0,5) UH для трансформаторов большой мощности. Падение напряжения в первичной обмотке весьма мало. С допустимой точностью можно принять, что E1 = U1 и Е2 = U2, так как ток во вторичной обмотке практически равен нулю.

Из опыта холостого хода трансформатора определяют также зависимости тока холостого хода Ix, потребляемой мощностиРх и коэффициента мощности cosφ от значения подводимого напряжения U1, при разомкнутой вторичной обмотке, то есть при I2 = 0. Ток холостого хода силовых трансформаторов составляет от 10 (для маломощных трансформаторов) до 2% (для мощных трансформаторов) номинального. При снятии характеристик холостого хода подводимое напряжение изменяют в пределах от 0,6 до 1,2 UH таким образом, чтобы получить 6...7 показаний. На рисунке 11.4,6 дан примерный вид характеристик холостого хода.

Мощность холостого хода характеризует электрическую энергию, расходуемую в самом трансформаторе, так как со вторичной обмотки энергию при этом не потребляют. Энергия в трансформаторе расходуется на нагрев обмоток проходящим по ним током и нагрев стали сердечника (вихревые токи и гистерезис). Потери на нагрев обмоток (потери в обмотках) при холостом ходе ничтожно малы. Практически можно считать, что все потери холостого хода сосредоточены в стали сердечника и идут на его нагрев.

Коэффициент мощности трансформатора определяют по формуле

.                Px

cosφ = ——————.                        (11.3)

.           3Ux.фIk

где Рх — полная мощность, потребляемая трансформатором при холостом ходе (сумма показаний двух ваттметров, приведенных на рисунке 11.4, а); Uх.ф и Ix — средние значения фазных напряжения и тока.

Опыт короткого замыкания проводят по схеме, изображенной на рисунке 11.5, а. К обмотке низшего напряжения подводят напряжение, при котором в обмотке высшего напряжения, замкнутой накоротко, протекает номинальный ток. Это напряжение называют напряжением короткого замыкания еk%;его значение приводят в паспорте трансформатора в процентах номинального.

Так как в этом опыте из-за малого напряжения, подведенного к обмотке низшего напряжения, магнитный поток в сердечнике весьма незначителен и сердечник не нагревается, то считают, что вся потребляемая трансформатором при опыте короткого замыкания мощность затрачивается на электрические потери в проводниках обмоток. Характеристики короткого замыкания (рис. 11.5,6) представляют собой зависимости потребляемого тока Ik мощности Pk и коэффициента мощности cosφ, от подведенного напряжения при замкнутой вторичной обмотке. Значение подводимого напряжения находится в пределах 5...10% номинального. Коэффициент мощности определяют так:

 

.                Pk

cosφk = ——————.                        (11.4)

.           3Ux.фIk

Сумма показаний ваттметров дает значение потерь в трансформаторе, которые вызывают нагрев обмоток. Мощность, показываемая ваттметром,

Pk = Pm1 + Pm2 = 3I12 + 3I22R2,

где R1 и R2—сопротивления первичной и вторичной обмоток трансформатора.

 

Напряжение короткого замыкания, при котором во вторичной обмотке протекает ток, равный номинальному, выражают в процентах номинального:

.           Uk.ф

ek% = ————100.                         (11.6)

.           Uн.ф

Напряжение короткого замыкания — важная характеристика трансформатора. По этой величине делают вывод о возможности параллельной работы трансформаторов, по ней и ее составляющим определяют изменения вторичного напряжения трансформатора при изменении нагрузки. Используя эту величину, находят токи короткого замыкания в условиях эксплуатации.

44. Потери энергии и КПД. Внешняя характеристика трансформатора

Эффективность работы трансформатора напряжения характеризуется КПД (коэффициентом полезного действия) .  В идеальном трансформаторе КПД = 100%.  В реальном трансформаторе присутствуют факторы, вызывающие бесполезные потери. Главные из них:  1. Активное сопротивление обмоток трансформатора.  При протекании тока по первичной и вторичной цепям на этих сопротивлениях поглощается энергия.  2. При работе трансформатора происходит перемагничивание магнитопровода (сердечника) трансформатора с некоторым гистерезисом.  3. Переменное магнитное поле вызывает в самом магнитопроводе "блуждающие" или "вихревые" токи (токи Фуко) . Эти токи также поглощаются электрическим сопротивлением материала магнитопровода.  4. Магнитопровод не идеален и переменный магнитный поток не только замыкается в самом магнитопроводе, но и частично рассеивается во внешнюю среду.  Все электромагнитные потери трансформатора в конечном итоге превращаются в тепло.  КПД реального трансформатора около 95 - 98 процентов.

Энергия из первички перекачивается во вторичку. В процессе передачи энергии происходит её потеря. Нормальное совершенно явление. Без потерь ничего в реальном мире не проходит. Часть энергии тратится на разогрев проводов обмотки. Часть - на разогрев материала сердечника. Сердечник же тоже проводящий? И в нём точно так же наводится электрический ток. Этот ток разогревает материал сердечника - куда-то же должна деться энергия, которая попала в сердечник? Вот и потери энергии.

ВНЕШНЯЯ ХАРАКТЕРИСТИКА ТРАНСФОРМАТОРА

Зависимость напряжения на вторичной обмотке трансформатора от тока нагрузки U2 = f(I2) при U1 = const и cos φ2 = const называется внешней характеристикой. Из уравнения (8.15) для упрощенной схемы замещения трансформатора следует, что с изменением тока во вторичной обмотке (тока нагрузки I2) напряжение на вторичной обмотке изменяется. Значение напряжения на вторичной обмотке определяется не падением напряжения, а потерей напряжения в обмотках. Потеря напряжения есть арифметическая разность между первичным и приведенным вторичным напряжением:

ΔU'2 = U1 - U'2.

При отсутствии нагрузки (I2 = 0) напряжение на вторичной обмотке U'2 = U'20 = U1, а поскольку напряжение U1 не зависит от нагрузки, то ΔU'2 есть изменение напряжения U'2 по сравнению с его значением при холостом ходе U'20, или

ΔU'2 = U'20 - U'2;    ΔU2 = U20 - U2,

откуда

U2 = U20 - ΔU2.

Потеря напряжения определяется из векторной диаграммы упрощенной   схемы   замещения   трансформатора   (рис.   8.14):

ΔU'2 - U1 - U'2 = OB' -ОА ≈ ОВ -ОА = АВ;

ΔU'2 =I1rк cos φ2 + I1xк sin φ2 = I1(rк cos φ2 + xк sin φ2);

(8.16)

ΔU2 = ΔU'2/n.

Рис   8.14    Векторная  диаграмма  (а)  упрощенной  схемы   замещения (б) трансформатора

Рис 8.15 Внешние характеристики трансформаторов средней и большой мощности

Рис. 8.16 Внешние характеристики трансформатора малой мощности

На рис. 8.15 изображены внешние характеристики трансформатора при различных значениях коэффициента мощности потребителей. Изменение напряжения U2 во многом зависит, как это видно из выражения (8.16), не только от значений zк, cos φ2, но и от соотношения значений rк ихк. Изображенные внешние характеристики (рис. 8.15) справедливы для трансформаторов средней и большой мощности, у которых zк мало и хк > rк . У трансформаторов малой мощности zкотносительно велико и rк > хк . Поэтому изменение напряжения у них более значительное и взаимное расположение внешних характеристик при различных значениях коэффициента мощности потребителей существенно отличается от трансформаторов большой мощности. Примерные внешние характеристики трансформаторов малой мощности при различных значениях cos φ2 изображены на рис. 8.16.

45. Специальные типы трансформаторов. Трехфазные трансформаторы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]