
- •Идеальный источник тока
- •Реальный источник тока
- •Закон Ома
- •Определения
- •Первое правило
- •Второе правило
- •Описание метода расчета
- •Основные принципы
- •Теоретические основы
- •Уравнение для потенциала в узлах
- •Практическое применение
- •Применение
- •Общее понятие о переменном токе
- •Переменный синусоидальный ток
- •Переменный синусоидальный ток
- •Описание явления
- •Замечания
- •Применение
- •Описание явления
- •Замечания Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.
- •Преимущества[править | править исходный текст]
- •Соединение звездой
- •Соединение треугольником
- •Трехпроводная электрическая цепь
- •Четырехпроводная цепь
- •Векторные диаграммы и комплексное представление[править | править исходный текст]
- •Принцип действия[править | править исходный текст]
- •Свойства ферромагнетиков
- •О применении электромагнитов постоянного тока в технике
- •Конструкция[править | править исходный текст]
- •Свойства катушки индуктивности[править | править исходный текст]
- •Описание коллекторного дпт
- •Статор (индуктор
- •Ротор (якорь)
- •Коллектор[править | править исходный текст]
- •Принцип работы
- •Классификация электрических машин
- •Применение
- •Генераторы независимого возбуждения
- •Реакция якоря
- •Устройство электрической машины постоянного тока
- •Принцип действия машины постоянного тока
- •Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •Назначение и области применения трансформаторов
- •Идеальный трансформатор
- •Базовые принципы действия трансформатора
- •Режимы работы трансформатора[править | править исходный текст]
- •Специальные типы трансформаторов
- •Асинхронная машина
- •Конструкция
- •Принцип действия
- •Устройство трехфазного асинхронного двигателя
- •Принцип действия трехфазного асинхронного электродвигателя.
- •Вращающий момент асинхронного двигателя
- •Потери в асинхронном двигателе
- •Кпд асинхронного двигателя
- •Применение[править | править исходный текст]
- •Классификация[править | править исходный текст]
- •Обозначения
- •Цифровой электроизмерительный прибор
- •Измерение неэлектрических величин электрическими методами
- •Выпрямление электрического тока
- •Однофазные инверторы[править | править исходный текст]
- •Трёхфазные инверторы
- •Инверторы и преобразователи напряжения 12 220
- •Электронные усилители. Общие положения
- •Классификация и основные характеристики усилителей
- •Режим а
- •Режимы b и ab
- •Режим c
- •Режим d
- •Основные характеристики и параметры усилителей
- •Усилители электрических сигналов
- •Структура и эквивалентная схема уэ
- •Импульсные устройства. Автогенераторы Общие понятия
- •Параметры импульсов и импульсных устройств
- •Методы защиты
- •Проектирование
- •Снижение напряжения прикосновения Заземление
- •Использование сверхнизких напряжений
- •Возможность оперативного снятия напряжения
- •Цепи электродвигателей
- •Пожарная безопасность[
- •Электрическое разделение сетей
- •При проведении электроработ
- •Ответственность
- •Место проведения электроработ
- •Снятие напряжения
- •Проверка отсутствия напряжения
- •Инструменты
- •Работа под напряжением
- •Действие электрического тока на организм человека.
- •Обеспечение электробезопасности техническими способами и средствами.
- •Принцип действия
- •Цели и принцип работы
- •Первая и неотложная помощь при поражении электрическим током
- •Синусоидальные токи
- •2.5 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •2.1.1 Идеальный резистивный элемент
- •2.1.2 Идеальный индуктивный элемент
- •2.1.3 Идеальный ёмкостный элемент
- •Комплексные значения полных сопротивлений и проводимостей цепи. Закон ома в комплексной форме
- •Резонанс токов
- •21. Трехфазные цепи с симметричными приемниками энергии. Электрические цепи с несколькими приемниками
- •25. Применение электромагнитных устройств постоянного и переменного тока в технике. Понятие об электромагнитных устройствах и магнитных цепях
- •Катушка с ферромагнитным сердечником.
- •34. Сравнительная оценка свойств и областей применения генераторов постоянного тока различных способов возбуждения. Свойства и характеристики генераторов независимого возбуждения
- •Свойства и характеристики генераторов параллельного возбуждения
- •Свойства и характеристики генераторов смешанного возбуждения
- •Сравнительная оценка и технические данные генераторов постоянного тока
- •Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин
Переменный синусоидальный ток
Колебания маятника также подчиняются закону синуса. Если записать проекцию траектории движения математического маятника на движущуюся бумажную ленту — получится синусоида.
Синусоидальным током называется периодический переменный ток, который с течением времени изменяется по закону синуса.
Синусоидальный ток — элементарный, то есть его невозможно разложить на другие более простые переменные токи.
Переменный синусоидальный ток выражается формулой:
,
где
—
амплитуда
синусоидального тока;
—
некоторый угол,
называемый фазой
синусоидального тока.
Фаза синусоидального
тока изменяется
пропорционально времени
.
Множитель ,
входящий в выражение фазы
—
величина постоянная, называемая угловой
частотой переменного
тока.
Угловая
частота синусоидального
тока зависит от частоты
этого
тока и определяется формулой:
,
где
—
угловая частота
синусоидального тока;
—
частота синусоидального
тока;
— период синусоидального
тока;
—
центральный
угол окружности,
выраженный в радианах.
Зависимость синусоидального тока от времени
Зависимость синусоидального тока от угла ωt
Периоду соответствует
угол
,
половине периода
угол
и
так далее…
Исходя
из формулы ,
можно определить размерность угловой
частоты:
,
где
— время в секундах,
—
угол в радианах,
является безразмерной величиной.
Фаза синусоидального
тока измеряется радианами.
1
радиан = 57°17′, угол 90° = радиан,
угол 180° =
радиан,
угол 270° =
радиан,
угол 360° =
радиан,
где
радиан;
— число
«Пи», ° — угловой
градус и ′ — угловая
минута.
Формула описывает
случай, когда наблюдение за изменением
переменного синусоидального тока
начинается с момента времени
при
.
Если
не
равен нулю, тогда формула для определения
мгновенного значения переменного
синусоидального тока примет следующий
вид:
,
где
— фаза переменного
синусоидального тока;
— угол,
называемый начальной
фазой переменного синусоидального
тока.
Начальная
фаза переменного тока
Начальная
фаза переменного тока
Если
в формуле принять
,
то будем иметь
,
и
.
Начальная
фаза — это фаза синусоидального тока
в момент времени .
Начальная
фаза переменного синусоидального тока
может быть положительной или
отрицательной
величиной.
При
мгновенное
значение синусоидального тока в момент
времени
положительно,
при
—
отрицательно.
Если
начальная фаза ,
то ток определяется по формуле
.
Мгновенное значение его в момент
времени
равно
,
то есть равно положительной амплитуде
тока.
Если
начальная фаза ,
то ток определяется по формуле
.
Мгновенное значение его в момент
времени
равно
,
то есть равно отрицательной амплитуде
тока.
9. Идеальные элементы электрической цепи синусоидального тока
11. Неразветвленная цепь синусоидального тока. Резонанс напряжений
Резонанс напряжений - резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
Описание явления
Пусть имеется колебательный контур с частотой собственных колебаний f, и пусть внутри него работает генератор переменного тока такой же частоты f.
В начальный момент конденсатор контура разряжен, генератор не работает. После включения напряжение на генераторе начинает возрастать, заряжая конденсатор. Катушка в первое мгновение не пропускает ток из-за ЭДС самоиндукции. Напряжение на генераторе достигает максимума, заряжая до такого же напряжения конденсатор.
Далее: конденсатор начинает разряжаться на катушку. Напряжение на нем падает с такой же скоростью, с какой уменьшается напряжение на генераторе.
Далее: конденсатор разряжен до нуля, вся энергия электрического поля, имевшаяся в конденсаторе, перешла в энергию магнитного поля катушки. На клеммах генератора в этот момент напряжение нулевое.
Далее: так как магнитное поле не может существовать стационарно, оно начинает уменьшаться, пересекая витки катушки в обратном направлении. На выводах катушки появляется ЭДС индукции, которое начинает перезаряжать конденсатор. В цепи колебательного контура течет ток, только уже противоположно току заряда, так как витки пересекаются полем в обратном направлении. Обкладки конденсатора перезаряжаются зарядами, противоположными первоначальным. Одновременно растет напряжение на генераторе противоположного знака, причем с той же скоростью, с какой катушка заряжает конденсатор.
Далее: катушка перезарядила конденсатор до максимального напряжения. Напряжение на генераторе к этому моменту тоже достигло максимального.
Возникла следующая ситуация. Конденсатор и генератор соединены последовательно и на обоих напряжение, равное напряжению генератора. При последовательном соединении источников питания их напряжения складываются.
Следовательно, в следующем полупериоде на катушку пойдет удвоенное напряжение (и от генератора, и от конденсатора), и колебания в контуре будут происходить при удвоенном напряжении на катушке.
В контурах с низкой добротностью напряжение на катушке будет ниже удвоенного, так как часть энергии будет рассеиваться (на излучение, на нагрев) и энергия конденсатора не перейдет полностью в энергию катушки). Соединены как бы последовательно генератор и часть конденсатора.