
- •Идеальный источник тока
- •Реальный источник тока
- •Закон Ома
- •Определения
- •Первое правило
- •Второе правило
- •Описание метода расчета
- •Основные принципы
- •Теоретические основы
- •Уравнение для потенциала в узлах
- •Практическое применение
- •Применение
- •Общее понятие о переменном токе
- •Переменный синусоидальный ток
- •Переменный синусоидальный ток
- •Описание явления
- •Замечания
- •Применение
- •Описание явления
- •Замечания Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.
- •Преимущества[править | править исходный текст]
- •Соединение звездой
- •Соединение треугольником
- •Трехпроводная электрическая цепь
- •Четырехпроводная цепь
- •Векторные диаграммы и комплексное представление[править | править исходный текст]
- •Принцип действия[править | править исходный текст]
- •Свойства ферромагнетиков
- •О применении электромагнитов постоянного тока в технике
- •Конструкция[править | править исходный текст]
- •Свойства катушки индуктивности[править | править исходный текст]
- •Описание коллекторного дпт
- •Статор (индуктор
- •Ротор (якорь)
- •Коллектор[править | править исходный текст]
- •Принцип работы
- •Классификация электрических машин
- •Применение
- •Генераторы независимого возбуждения
- •Реакция якоря
- •Устройство электрической машины постоянного тока
- •Принцип действия машины постоянного тока
- •Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •Назначение и области применения трансформаторов
- •Идеальный трансформатор
- •Базовые принципы действия трансформатора
- •Режимы работы трансформатора[править | править исходный текст]
- •Специальные типы трансформаторов
- •Асинхронная машина
- •Конструкция
- •Принцип действия
- •Устройство трехфазного асинхронного двигателя
- •Принцип действия трехфазного асинхронного электродвигателя.
- •Вращающий момент асинхронного двигателя
- •Потери в асинхронном двигателе
- •Кпд асинхронного двигателя
- •Применение[править | править исходный текст]
- •Классификация[править | править исходный текст]
- •Обозначения
- •Цифровой электроизмерительный прибор
- •Измерение неэлектрических величин электрическими методами
- •Выпрямление электрического тока
- •Однофазные инверторы[править | править исходный текст]
- •Трёхфазные инверторы
- •Инверторы и преобразователи напряжения 12 220
- •Электронные усилители. Общие положения
- •Классификация и основные характеристики усилителей
- •Режим а
- •Режимы b и ab
- •Режим c
- •Режим d
- •Основные характеристики и параметры усилителей
- •Усилители электрических сигналов
- •Структура и эквивалентная схема уэ
- •Импульсные устройства. Автогенераторы Общие понятия
- •Параметры импульсов и импульсных устройств
- •Методы защиты
- •Проектирование
- •Снижение напряжения прикосновения Заземление
- •Использование сверхнизких напряжений
- •Возможность оперативного снятия напряжения
- •Цепи электродвигателей
- •Пожарная безопасность[
- •Электрическое разделение сетей
- •При проведении электроработ
- •Ответственность
- •Место проведения электроработ
- •Снятие напряжения
- •Проверка отсутствия напряжения
- •Инструменты
- •Работа под напряжением
- •Действие электрического тока на организм человека.
- •Обеспечение электробезопасности техническими способами и средствами.
- •Принцип действия
- •Цели и принцип работы
- •Первая и неотложная помощь при поражении электрическим током
- •Синусоидальные токи
- •2.5 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •2.1.1 Идеальный резистивный элемент
- •2.1.2 Идеальный индуктивный элемент
- •2.1.3 Идеальный ёмкостный элемент
- •Комплексные значения полных сопротивлений и проводимостей цепи. Закон ома в комплексной форме
- •Резонанс токов
- •21. Трехфазные цепи с симметричными приемниками энергии. Электрические цепи с несколькими приемниками
- •25. Применение электромагнитных устройств постоянного и переменного тока в технике. Понятие об электромагнитных устройствах и магнитных цепях
- •Катушка с ферромагнитным сердечником.
- •34. Сравнительная оценка свойств и областей применения генераторов постоянного тока различных способов возбуждения. Свойства и характеристики генераторов независимого возбуждения
- •Свойства и характеристики генераторов параллельного возбуждения
- •Свойства и характеристики генераторов смешанного возбуждения
- •Сравнительная оценка и технические данные генераторов постоянного тока
- •Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин
Снятие напряжения
На время проведения электроработ, сторона потребителя всегда должна быть закорочена на землю.
Во избежание создания опасных ситуаций, перед началом работ снимается напряжение на задействованном участке электроцепи и коммутационный аппарат помечается соответствующими предупреждающими знаками. В промышленных электроустановках используются заземляющие ножи, закорачивающие фазные провода на стороне потребителя при снятии напряжения на землю: в случае ошибочного возвращения напряжения произойдёт короткое замыкание и срабатывание предохранителя, работающие в электроустановке люди при этом не пострадают. При электроработах в жилом хозяйстве чаще всего ограничиваются отключением предохранителя — таким образом случайный возврат напряжения поставит под угрозу жизни работающих в электроустановке людей. Для воздушных линий используется переносное заземление.
Проверка отсутствия напряжения
Проверка отсутствия напряжения на оголённых проводниках проверяется исключительно двухполюсным пробником. Перед работой сам пробник проверяется на исправность в том месте, где есть напряжение (электрики зачастую используют карманный фонарь, поскольку в диапазон измерения многих современных пробников входит как напряжение карманного фонаря, так и напряжение бытовой сети). После проверки пробника на исправность, им проверяют отсутствие напряжение между фазами, затем между каждой фазой и нулевым проводником и между каждой фазой и защитным проводником (7 измерений).
Инструменты
Отвёртка с изолированной рукояткой.
При проведении работ в электроустановке допускается использование только изолированных инструментов, имеющих изолированную рукоятку на отведённое напряжение. Во избежание поражения электрическим током или ожогов из-за короткого замыкания, строго запрещается работать в электроустановке слесарными инструментами.
Работа под напряжением
Работа под напряжением представляет собой риски:
поражение электрическим током ввиду большой площади открытых проводников
получения ожогов из-за возможности создания случайного короткого замыкания
Действие электрического тока на организм человека.
При эксплуатации и ремонте электрического оборудования и сетей человек может оказаться в сфере действия электрического поля или непосредственном соприкосновении с находящимися под напряжением проводками электрического тока. В результате прохождения тока через человека может произойти нарушение его жизнедеятельных функций. Опасность поражения электрическим током усугубляется тем, что, во первых, ток не имеет внешних признаков и как правило человек без специальных приборов не может заблаговременно обнаружить грозящую ему опасность; во вторых, воздействия тока на человека в большинстве случаев приводит к серьезным нарушениям наиболее важных жизнедеятельных систем, таких как центральная нервная, сердечно-сосудистая и дыхательная, что увеличивает тяжесть поражения; в третьих, переменный ток способен вызвать интенсивные судороги мышц, приводящие к не отпускающему эффекту, при котором человек самостоятельно не может освободиться от воздействия тока; в четвертых, воздействие тока вызывает у человека резкую реакцию одергивания, а в ряде случаев и потерю сознания, что при работе на высоте может привести к травмированию в результате падения. Электрический ток, проходя через тело человека, может оказывать биологическое, тепловое, механическое и химическое действия. Биологическое действие заключается в способности электрического тока раздражать и возбуждать живые ткани организма, тепловое – в способности вызывать ожоги тела, механическое – приводить к разрыву тканей, а химическое – к электролизу крови. Воздействие электрического тока на организм человека может явиться причиной электротравмы. Электротравма – это травма, вызванная воздействием электрического тока или электрической дуги. Условно электротравмы делят на местные и общие. При местных электротравмахвозникает местное повреждение организма, выражающиеся в появлении электрических ожогов, электрических знаков, в металлизации кожи, механических повреждениях и электроофтальмии (воспаление наружных оболочек глаз). Общие электротравмы, или электрические удары, приводят к поражению всего организма, выражающемуся в нарушении или полном прекращении деятельности наиболее жизненно важных органов и систем – легких (дыхания), сердца (кровообращения).
……………….
Влияние электрического тока на организм человека 1.1 Виды поражений электрическим током Проходя через организм, электрический ток производит 3 вида воздействия: термическое, электролитическое и биологическое. Термическое действие проявляется в ожогах наружных и внутренних участков тела, нагреве кровеносных сосудов и крови и т.п., что вызывает в них серьёзные функциональные расстройства. Электролитическое в разложении крови и другой органической жидкости, вызывая тем самым значительные нарушения их физико-химических составов и ткани в целом. Биологическое действие выражается в раздражении и возбуждении живых тканей организма, что может сопровождаться непроизвольными судорожными сокращениями мышц, в том числе мышц сердца и лёгких. При этом могут возникнуть различные нарушения в организме, включая механическое повреждение тканей, а также нарушение и даже полное прекращение деятельности органов дыхания и кровообращения. Различают два основных вида поражения организма: электрические травмы и электрические удары. Часто оба вида поражения сопутствуют друг другу. Тем не менее они различны и должны рассматриваться раздельно. 1.1.1 Электрические травмы Электрические травмы это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей. Опасность электрических травм и сложность их лечения обуславливаются характером и степенью повреждения тканей, а также реакцией организма на это повреждение. Обычно травмы излечиваются, и работоспособность пострадавшего восстанавливается полностью или частично. Иногда (обычно при тяжёлых ожогах) человек погибает. В таких случаях непосредственной причиной смерти является не электрический ток, а местное повреждение организма, вызванное током. Характерные виды электрических травм электрические ожоги, электрические знаки, металлизация кожи и механические повреждения. Электрический ожог самая распространённая электрическая травма: ожоги возникают у большей части пострадавших от электрического тока (60-65 %), причём треть их сопровождается другими травмами знаками, металлизацией кожи и механическими повреждениями. В зависимости от условий возникновения различаются три вида ожогов: -токовый, или контактный, возникающий при прохождении тока непосредственно через тело человека в результате контакта человека с токоведущей частью; этот вид ожога возникает в электроустановках относительно небольшого напряжения не выше 1-2 кВ и является, как правило, ожогом кожи, то есть внешним повреждением; -дуговой, обусловленный воздействием на тело человека электрической дуги, но без прохождения тока через тело человека; обычно это ожоги являются результатом случайных коротких замыканий в электроустановках от 220 до 6000 В, например, при работах под напряжением на щитах и сборках, при выполнении измерений переносными приборами и т. п. ; -смешанный, являющийся результатом действия одновременно обоих указанных факторов, то есть действия электрической дуги и прохождения тока через тело человека; этот ожог возникает, как правило, в установках более высокого напряжения выше 1000 В. При этом дуга образуется между токоведущей частью и человеком, а ток, имеющий обычно большое значение (несколько ампер и даже десятков ампер), проходит через тело человека. В этом случае поражения носят тяжёлый характер и нередко оканчиваются смертью пострадавшего, причём тяжесть поражения возрастает с ростом напряжения электроустановки. Электрические знаки, именуемые также знаками тока или электрическими метками, представляют собой чётко очерченные пятна серого или бледно-жёлтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Часто знаки имеют круглую или овальную форму с углублением в центре; размеры знаков 1-5 мм. Поражённый участок кожи затвердевает подобно мозоли.
65. Нормы на допустимые токи и напряжения прикосновения
ПРЕДЕЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ НАПРЯЖЕНИЙ
ПРИКОСНОВЕНИЯ И ТОКОВ
1.1. Предельно допустимые значения напряжений прикосновения и токов установлены для
путей тока от одной руки к другой и от руки к ногам.
(Измененная редакция, Изм. № 1).
1.2. Напряжения прикосновения и токи, протекающие через тело человека при нормальном
(неаварийном) режиме электроустановки, не должны превышать значений, указанных в табл.1.
Таблица 1
Род тока U, В I, мА
не более
Переменный, 50 Гц 2,0 0,3
Переменный, 400 Гц 3,0 0,4
Постоянный 8,0 1,0
Примечания: 1 Напряжения прикосновения и токи приведены при продолжительности воздействий не более 10 мин
в сутки и установлены, исходя из реакции ощущения.
2 Напряжения прикосновения и токи для лиц, выполняющих работу в условиях высоких температур
(выше 25°С) и влажности (относительная влажность более 75%), должны быть уменьшены в три раза.
1.3. Предельно допустимые значения напряжений прикосновения и токов при аварийном
режиме производственных электроустановок напряжением до 1000 В с глухозаземленной или
изолированной нейтралью и выше 1000 В с изолированной нейтралью не должны превышать
значений, указанных в табл.2
65. Нормы на допустимые токи и напряжения прикосновения
Напряжение прикосновения — напряжение, появляющееся на теле человека при одновременном прикосновении к двум точкам проводников или проводящих частей, в том числе при повреждении изоляции. Напряжение прикосновения: Напряжение между двумя открытыми проводящими частями при одновременном прикосновении к ним человека или животного, а также напряжение между открытой проводящей частью, к которой прикасается человек или животное, и местом на поверхности локальной земли или проводящего пола, на котором стоит человек или животное. Ожидаемое напряжение прикосновения: То же, что и напряжение прикосновения, но в предположении, что человек или животное отсутствует. Напряжение на корпусах и каркасах оборудования, а также на конструкциях, на которых последнее установлено, появляется в случае полного или частичного повреждения электрической изоляции самого оборудования или в случае повреждения питающих это оборудование кабельных или воздушных линий. Так, например, если человек стоит на грунте и касается заземленного корпуса оказавшегося под напряжением, то напряжение прикосновения численно равно разности потенциалов корпуса и точек почвы, где находятся ноги человека. Напряжение прикосновения увеличивается по мере удаления от места заземления и за пределами зоны растекания тока равно напряжению на корпусе оборудования относительно земли. Под зоной растекания, понимается зона земли, за пределами которой электрический потенциал, возникший из-за замыкания токоведущих частей на землю, может быть условно принят равным нулю.
Напряжение прикосновения
Согласно нормативным документам напряжение прикосновения – это напряжение между двумя проводящими частями или между проводящей частью и землей при одновременном прикосновении к ним человека или животного.
Другими словами напряжением прикосновения (для человека) Uпр называется напряжение между двумя точками цепи тока, которых одновременно касается человек, или падение напряжения в сопротивлении тела человека, В:
Uпр = Ih Rh, (2.35)
где Ih — ток, проходящий через человека по пути "рука - ноги", A; Rh — сопротивление тела человека, Ом.
В области защитных заземлений, занулений и т. п. одна из этих точек имеет потенциал заземлителя jз, а другая — потенциал основания в том месте, где стоит человек,jосн. При этом напряжение прикосновения:
Uпр = j з - j осн. (2.36)
Если принять во внимание характер изменения потенциала по поверхности грунта и пренебречь сопротивлением растеканию тока основания, то Uпр = j зa1,
где a1 — коэффициент, называемый коэффициентом напряжения прикосновения или просто коэффициентом прикосновения, учитывающим форму потенциальной кривой:
(2.37)
Поскольку напряжение прикосновения зависит от значения потенциала заземлителя и от характера его потенциальной кривой, опасность для человека будет различной при использовании различных типов одиночных заземлителей и групповых заземлителей:
Напряжение прикосновения при одиночном заземлителе;
Напряжение прикосновения при групповом заземлителе.
66. Требование к электробезопасности конструкции электроустановок. Обеспечение электробезопасности техническими способами и средствами