
- •Идеальный источник тока
- •Реальный источник тока
- •Закон Ома
- •Определения
- •Первое правило
- •Второе правило
- •Описание метода расчета
- •Основные принципы
- •Теоретические основы
- •Уравнение для потенциала в узлах
- •Практическое применение
- •Применение
- •Общее понятие о переменном токе
- •Переменный синусоидальный ток
- •Переменный синусоидальный ток
- •Описание явления
- •Замечания
- •Применение
- •Описание явления
- •Замечания Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.
- •Преимущества[править | править исходный текст]
- •Соединение звездой
- •Соединение треугольником
- •Трехпроводная электрическая цепь
- •Четырехпроводная цепь
- •Векторные диаграммы и комплексное представление[править | править исходный текст]
- •Принцип действия[править | править исходный текст]
- •Свойства ферромагнетиков
- •О применении электромагнитов постоянного тока в технике
- •Конструкция[править | править исходный текст]
- •Свойства катушки индуктивности[править | править исходный текст]
- •Описание коллекторного дпт
- •Статор (индуктор
- •Ротор (якорь)
- •Коллектор[править | править исходный текст]
- •Принцип работы
- •Классификация электрических машин
- •Применение
- •Генераторы независимого возбуждения
- •Реакция якоря
- •Устройство электрической машины постоянного тока
- •Принцип действия машины постоянного тока
- •Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •Назначение и области применения трансформаторов
- •Идеальный трансформатор
- •Базовые принципы действия трансформатора
- •Режимы работы трансформатора[править | править исходный текст]
- •Специальные типы трансформаторов
- •Асинхронная машина
- •Конструкция
- •Принцип действия
- •Устройство трехфазного асинхронного двигателя
- •Принцип действия трехфазного асинхронного электродвигателя.
- •Вращающий момент асинхронного двигателя
- •Потери в асинхронном двигателе
- •Кпд асинхронного двигателя
- •Применение[править | править исходный текст]
- •Классификация[править | править исходный текст]
- •Обозначения
- •Цифровой электроизмерительный прибор
- •Измерение неэлектрических величин электрическими методами
- •Выпрямление электрического тока
- •Однофазные инверторы[править | править исходный текст]
- •Трёхфазные инверторы
- •Инверторы и преобразователи напряжения 12 220
- •Электронные усилители. Общие положения
- •Классификация и основные характеристики усилителей
- •Режим а
- •Режимы b и ab
- •Режим c
- •Режим d
- •Основные характеристики и параметры усилителей
- •Усилители электрических сигналов
- •Структура и эквивалентная схема уэ
- •Импульсные устройства. Автогенераторы Общие понятия
- •Параметры импульсов и импульсных устройств
- •Методы защиты
- •Проектирование
- •Снижение напряжения прикосновения Заземление
- •Использование сверхнизких напряжений
- •Возможность оперативного снятия напряжения
- •Цепи электродвигателей
- •Пожарная безопасность[
- •Электрическое разделение сетей
- •При проведении электроработ
- •Ответственность
- •Место проведения электроработ
- •Снятие напряжения
- •Проверка отсутствия напряжения
- •Инструменты
- •Работа под напряжением
- •Действие электрического тока на организм человека.
- •Обеспечение электробезопасности техническими способами и средствами.
- •Принцип действия
- •Цели и принцип работы
- •Первая и неотложная помощь при поражении электрическим током
- •Синусоидальные токи
- •2.5 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •2.1.1 Идеальный резистивный элемент
- •2.1.2 Идеальный индуктивный элемент
- •2.1.3 Идеальный ёмкостный элемент
- •Комплексные значения полных сопротивлений и проводимостей цепи. Закон ома в комплексной форме
- •Резонанс токов
- •21. Трехфазные цепи с симметричными приемниками энергии. Электрические цепи с несколькими приемниками
- •25. Применение электромагнитных устройств постоянного и переменного тока в технике. Понятие об электромагнитных устройствах и магнитных цепях
- •Катушка с ферромагнитным сердечником.
- •34. Сравнительная оценка свойств и областей применения генераторов постоянного тока различных способов возбуждения. Свойства и характеристики генераторов независимого возбуждения
- •Свойства и характеристики генераторов параллельного возбуждения
- •Свойства и характеристики генераторов смешанного возбуждения
- •Сравнительная оценка и технические данные генераторов постоянного тока
- •Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин
Свойства ферромагнетиков
Магнитная восприимчивость ферромагнетиков положительна и значительно больше единицы.
При не слишком высоких температурах ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий.
Для ферромагнетиков характерно явление гистерезиса.
Ферромагнетики притягиваются магнитом.
Свойства ферромагнитных материалов принято характеризовать зависимостью магнитной индукции В от напряженности магнитного поля Н. Различают два основных типа этих зависимостей: кривые намагничивания и гистерезисные петли.
Под кривыми намагничивания понимают однозначную зависимость между В и Н. Кривые намагничивания подразделяют на начальную, основную и безгистерезисную (что будет пояснено далее).
Из курса физики известно, что ферромагнитным материалам присуще явление гистерезиса — отставание изменения магнитной индукции В от изменения напряженности магнитного поля Н. Он обусловлен необратимыми изменениями энергетического состояния под действием внешнего поля Н. При периодическом изменении напряженности поля зависимость между В и Н приобретает петлевой характер.
Различают несколько типов гистерезисных петель — симметричную, предельную и несимметричную (частный цикл).
На
рис. 14.1 изображено семейство симметричных
гистерезисных петель. Для каждой
симметричной петли максимальное
положительное значение В равно
максимальному отрицательному значению
В и соответственно
Геометрическое
место вершин симметричных гистерезисных
петель называют основной кривой
намагничивания. При очень больших Н
вблизи восходящая
и нисходящая ветви гистерезисной петли
практически сливаются.
Предельной
гистерезисной петлей или предельным
циклом называют симметричную гистерезисную
петлю, снятую при очень больших .
Индукцию при
называют
остаточной индукцией и обозначают
Рис. 14.1
Рис. 14.2
Напряженность
поля при называют
задерживающей или коэрцитивной силой
и обозначают
Участок предельного цикла ВГНС (рис. 14.1) принято называть кривой размагничивания или «спинкой» гистерезисной петли.
Этот участок используют при расчетах магнитных цепей с постоянными магнитами и магнитных элементов запоминающих устройств вычислительной техники.
Если
изменять Н периодически и так, что то
зависимость между В и Н будет иметь вид
петли, но центр петли не совпадает с
началом координат (рис. 14.2). Такие
гистерезисные петли называют частными
петлями гистерезиса или частными
циклами.
Когда предварительно размагниченный ферромагнитный материал (В — О, Н — О) намагничивают, монотонно увеличивая Н, получаемую зависимость между В и Н называют начальной кривой намагничивания.
Начальная и основная кривые намагничивания настолько близко расположены друг к другу, что практически во многих случаях их можно считать совпадающими (рис. 14.2).
Безгистерезисной кривой намагничивания называют зависимость между В и Н, возникающую, когда при намагничивании ферромагнитного материала его периодически постукивают или воздействуют на него полем, имеющим кроме постоянной составляющей еще и затухающую по амплитуде синусоидальную составляющую. При этом гистерезис как бы снимается.
Безгистерезисная кривая намагничивания резко отличается от основной кривой.
В различных справочниках, а также в ГОСТе в качестве однозначной зависимости между В и Н дается основная кривая намагничивания.
28. Понятие о магнитных цепях с постоянными магнитодвижущими силами (МДС) и их основные законы