
- •Идеальный источник тока
- •Реальный источник тока
- •Закон Ома
- •Определения
- •Первое правило
- •Второе правило
- •Описание метода расчета
- •Основные принципы
- •Теоретические основы
- •Уравнение для потенциала в узлах
- •Практическое применение
- •Применение
- •Общее понятие о переменном токе
- •Переменный синусоидальный ток
- •Переменный синусоидальный ток
- •Описание явления
- •Замечания
- •Применение
- •Описание явления
- •Замечания Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности.
- •Преимущества[править | править исходный текст]
- •Соединение звездой
- •Соединение треугольником
- •Трехпроводная электрическая цепь
- •Четырехпроводная цепь
- •Векторные диаграммы и комплексное представление[править | править исходный текст]
- •Принцип действия[править | править исходный текст]
- •Свойства ферромагнетиков
- •О применении электромагнитов постоянного тока в технике
- •Конструкция[править | править исходный текст]
- •Свойства катушки индуктивности[править | править исходный текст]
- •Описание коллекторного дпт
- •Статор (индуктор
- •Ротор (якорь)
- •Коллектор[править | править исходный текст]
- •Принцип работы
- •Классификация электрических машин
- •Применение
- •Генераторы независимого возбуждения
- •Реакция якоря
- •Устройство электрической машины постоянного тока
- •Принцип действия машины постоянного тока
- •Работа электрической машины постоянного тока в режиме двигателя. Основные уравнения
- •Назначение и области применения трансформаторов
- •Идеальный трансформатор
- •Базовые принципы действия трансформатора
- •Режимы работы трансформатора[править | править исходный текст]
- •Специальные типы трансформаторов
- •Асинхронная машина
- •Конструкция
- •Принцип действия
- •Устройство трехфазного асинхронного двигателя
- •Принцип действия трехфазного асинхронного электродвигателя.
- •Вращающий момент асинхронного двигателя
- •Потери в асинхронном двигателе
- •Кпд асинхронного двигателя
- •Применение[править | править исходный текст]
- •Классификация[править | править исходный текст]
- •Обозначения
- •Цифровой электроизмерительный прибор
- •Измерение неэлектрических величин электрическими методами
- •Выпрямление электрического тока
- •Однофазные инверторы[править | править исходный текст]
- •Трёхфазные инверторы
- •Инверторы и преобразователи напряжения 12 220
- •Электронные усилители. Общие положения
- •Классификация и основные характеристики усилителей
- •Режим а
- •Режимы b и ab
- •Режим c
- •Режим d
- •Основные характеристики и параметры усилителей
- •Усилители электрических сигналов
- •Структура и эквивалентная схема уэ
- •Импульсные устройства. Автогенераторы Общие понятия
- •Параметры импульсов и импульсных устройств
- •Методы защиты
- •Проектирование
- •Снижение напряжения прикосновения Заземление
- •Использование сверхнизких напряжений
- •Возможность оперативного снятия напряжения
- •Цепи электродвигателей
- •Пожарная безопасность[
- •Электрическое разделение сетей
- •При проведении электроработ
- •Ответственность
- •Место проведения электроработ
- •Снятие напряжения
- •Проверка отсутствия напряжения
- •Инструменты
- •Работа под напряжением
- •Действие электрического тока на организм человека.
- •Обеспечение электробезопасности техническими способами и средствами.
- •Принцип действия
- •Цели и принцип работы
- •Первая и неотложная помощь при поражении электрическим током
- •Синусоидальные токи
- •2.5 Изображение синусоидальных эдс, напряжений и токов на плоскости декартовых координат
- •2.1.1 Идеальный резистивный элемент
- •2.1.2 Идеальный индуктивный элемент
- •2.1.3 Идеальный ёмкостный элемент
- •Комплексные значения полных сопротивлений и проводимостей цепи. Закон ома в комплексной форме
- •Резонанс токов
- •21. Трехфазные цепи с симметричными приемниками энергии. Электрические цепи с несколькими приемниками
- •25. Применение электромагнитных устройств постоянного и переменного тока в технике. Понятие об электромагнитных устройствах и магнитных цепях
- •Катушка с ферромагнитным сердечником.
- •34. Сравнительная оценка свойств и областей применения генераторов постоянного тока различных способов возбуждения. Свойства и характеристики генераторов независимого возбуждения
- •Свойства и характеристики генераторов параллельного возбуждения
- •Свойства и характеристики генераторов смешанного возбуждения
- •Сравнительная оценка и технические данные генераторов постоянного тока
- •Классификация двигателей по способу возбуждения. Схемы включения двигателей и положительные направления частоты вращения, момента, токов и других величин
Источники напряжения и тока, их свойства, характеристики и схемы замещения. Законы Ома и Кирхгофа.
Источник ЭДС (идеальный источник напряжения) — двухполюсник, напряжение на зажимах которого постоянно (не зависит от тока в цепи). Напряжение может быть задано как константа, как функция времени, либо как внешнее управляющее воздействие.
В простейшем случае напряжение определено как константа, то есть напряжение источника ЭДС постоянно.
Реальные источники напряжения
Рисунок 2
Идеальный
источник напряжения (источник ЭДС)
является физической абстракцией, то
есть подобное устройство не может
существовать. Если допустить существование
такого устройства, то электрический
ток I,
протекающий через него, стремился бы к
бесконечности при подключении нагрузки,
сопротивление RH которой
стремится к нулю. Но при этом получается,
что мощность источника
ЭДС также стремится к бесконечности,
так как .
Но это невозможно, по той причине, что
мощность любого источника энергии
конечна.
В реальности, любой источник напряжения обладает внутренним сопротивлением r, которое имеет обратную зависимость от мощности источника. То есть, чем больше мощность, тем меньше сопротивление (при заданном неизменном напряжении источника) и наоборот. Наличие внутреннего сопротивления отличает реальный источник напряжения от идеального. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника энергии. Эквивалентная схема реального источника напряжения представляет собой последовательное включение источника ЭДС — Е (идеального источника напряжения) и внутреннего сопротивления — r.
где
—
падение напряжения
на внутреннем сопротивлении;
—
падение напряжения
на нагрузке.
При
коротком замыкании ()
,
то есть вся мощность источника энергии
рассеивается на его внутреннем
сопротивлении. В этом случае ток
будет
максимальным для данного источника
ЭДС. Зная напряжение холостого хода и
ток короткого замыкания, можно вычислить
внутреннее сопротивление источника
напряжения:
Исто́чник
то́ка (также генератор
тока) — двухполюсник,
который создаёт ток ,
не зависящий от сопротивления нагрузки,
к которой он присоединён. В быту
«источником тока» часто неточно называют
любой источник электрического напряжения
(батарею, генератор, розетку), но в строго
физическом смысле это не так, более
того, обычно используемые в быту источники
напряжения по своим характеристикам
гораздо ближе к источнику
ЭДС,
чем к источнику тока.
Свойства:
Идеальный источник тока
Напряжение на клеммах идеального источника тока зависит только от сопротивления внешней цепи:
Мощность, отдаваемая источником тока в сеть, равна:
Так
как для источника тока ,
напряжение и мощность, выделяемая им,
неограниченно растут при росте
сопротивления..
Реальный источник тока
Реальный
источник тока, так же как и источник
ЭДС,
в линейном приближении может быть описан
таким параметром, как внутреннее
сопротивление .
Отличие состоит в том, что чем больше
внутреннее сопротивление, тем ближе
источник тока к идеальному (источник
ЭДС, наоборот, чем ближе к идеальному,
тем меньше его внутреннее сопротивление).
Реальный источник тока с внутренним
сопротивлением
эквивалентен
реальному источнику ЭДС, имеющему
внутреннее сопротивление
и
ЭДС
.
Напряжение на клеммах реального источника тока равно:
Сила тока в цепи равна:
Мощность, отдаваемая реальным источником тока в сеть, равна:
Схемы
замещения источников энергии
Простейшая
электрическая цепь и ее схема замещения,
как указывалось, состоят из одного
источника энергии с ЭДС Е и внутренним
сопротивлением rвт и
одного приемника с сопротивлением r.
Ток
во внешней по отношению к источнику
энергии части цепи, т. е. в приемнике с
сопротивлением r,
принимается направленным от точки а с
большим потенциалом к
точке b с
меньшим потенциалом
.
Направление
тока будем обозначать на схеме стрелкой
с просветом или указывать двумя индексами
у буквы I, такими
же, как и у соответствующих точек схемы.
Так, для схемы рис. 1.3 ток в приемнике I = Iаb,
где индексы а и b обозначают направление
тока от точки а к точке b.
Покажем,
что источник энергии с известными
ЭДС E и
внутренним сопротивлением rвт,
может быть представлен двумя
основными схемами замещения (эквивалентными
схемами).
Как
уже указывалось, с одной стороны,
напряжение на выводах источника энергии
меньше ЭДС на падение напряжения внутри
источника:
с
другой стороны, напряжение на
сопротивлении r
Ввиду
равенства
из
(1.5а) и (1.56) получается
или
В
частности, при холостом ходе (разомкнутых
выводах а и b)
получается E=Uх,
т. е. ЭДС равна напряжению холостого
хода. При коротком замыкании (выводов
а и b)
ток
Из
(1.7 6)
следует, что rвт источника
энергии, так же как и сопротивление
приемника, ограничивает ток.
На
схеме замещения можно показать элемент
схемы с rвт,
соединенным последовательно с элементом,
обозначающим ЭДС E (рис.
1.7, а). Напряжение U зависит от тока
приемника и равно разности между
ЭДС E источника
энергии и падением напряжения rвтI (1.6а).
Схема источника энергии, показанная на
рис. 1.7, а, называется первой
схемой замещения или
схемой с источником ЭДС.
Если rвт<<r и
напряжение Uвт<<U,
т. е. источник электрической энергии
находится в режиме, близком к холостому
ходу, то можно практически пренебречь
внутренним падением напряжения и
принять Uвт = rвт =
0.
В этом случае для источника энергии
получается более простая эквивалентная
схема только с источником ЭДС, у которого
в отличие от реального источника
исключается режим короткого замыкания
(U =0). Такой источник энергии без внутреннего
сопротивления (rвт =
0),
обозначенный кружком со стрелкой внутри
и буквой E (рис.
1.7,6), называют идеальным
источником ЭДС или источником
напряжения (источником
с заданным напряжением). Напряжение на
выводах такого источника не зависит от
сопротивления приемника и всегда равно
ЭДС E.
Его внешняя характеристика - прямая,
параллельная оси абсцисс (штриховая
прямая ab на
рис. 1.4).