Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kluwer - Handbook of Biomedical Image Analysis Vol

.1.pdf
Скачиваний:
92
Добавлен:
10.08.2013
Размер:
10.58 Mб
Скачать

104

Wong

Bibliography

[1]Cormack, A. M., Representation of a function by its line integral, with some radiological applications, II, J. Appl. Phys., Vol. 35, pp. 2908–2913, 1964.

[2]Hounsfield, G. N., A method and apparatus for examination of a body by radiation such as X or gamma radiation, The Patent Office, London, 1972, patent 1283915.

[3]Hounsfield, G. N., Computerized transverse axial scanning (tomography). I: Description of system, Br. J. Radiol., Vol. 46, pp. 1016–1022, 1973.

¨

[4] Radon, J., Uber die bestimmung von funktionen durchihre integralwarte¨ langs¨ gewisser mannigfaltigkeiten,¨ Bertichte Saechsiche¨ Akad. Wissenschaften (Leipzig), Math. Phys. Klass, Vol. 69, pp. 262– 277, 1917.

[5] Warburg, O., The Metabolism of Tumors, Arnold and Constable, London, 1930.

[6] Rutherford, E. and Soddy, F., The cause and nature of radioactivity, Philos. Mag., Vol. 6th series, No. 4, pp. 370–396, 1902.

[7] Dirac, P. A. M., A theory of electrons and protons, Proc. R. Soc. A, Vol. 126, pp. 360–365, 1930.

[8] Anderson, C. D., Energies of cosmic-ray particles, Phys. Rev., Vol. 40, pp. 405–421, 1932.

[9] Joliot, F., Preuve experimentale de l’annihilation des electons postifs, C. R. Acad. Sci., Vol. 197, pp. 1622–1625, 1933.

[10] Thibaud, J., L’annihilation des positrons au contact de la matiere et la radiation qiu en resulte, C. R. Acad. Sci., Vol. 197, pp. 1629–1632, 1933.

[11] Beringer, R. and Montgomery, C. G., The angular distribution of positron annihilation radiation, Phys. Rev., Vol. 61, pp. 222–224, 1942.

Quantitative Functional Imaging with Positron Emission Tomography

105

[12]Wrenn, F. R., Jr., Good, M. L., and Handler, P., Use of positron-emitting radioisotopes for localization of brain tumors, Science, Vol. 113, pp. 525–527, 1951.

[13]Sweet, W. H., Use of nuclear disintegrations in the diagnosis and treatment of brain tumors, N. Engl. J. Med., Vol. 245, pp. 875–878, 1951.

[14]Brownell, G. L. and Sweet, W. H., Localization of brain tumors with positron emitters, Nucleonics, Vol. 11, pp. 40–45, 1953.

[15]Kuhl, D. E. and Edwards, R. Q., Image separation radio-isotope scanning, Radiology, Vol. 80, pp. 653–661, 1963.

[16]Kuhl, D. E. and Edwards, R. Q., Reorganizing data from transverse section scans using digital processing, Radiology, Vol. 91, pp. 975–983, 1968.

[17]Todd-Pokropek, A. E., The formation and display of section scans, In: Proc. Symp. Amer. Congress Radiol., pp. 545–556, 1972.

[18]Burham, C. A. and Brownell, G. L., A multi-crystal positron camera, IEEE Trans. Nucl. Sci., Vol. NS-19, pp. 201–205, 1972.

[19]Anger, H. O., Multiple plane tomographic scanner, In: Tomographic Imaging in Nuclear Medicine, Freedman, G. S., ed., Society of Nuclear Medicine, New York, pp. 2–18, 1973.

[20]Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J., and Mullani, N. A., A positron-emission transaxial tomograph for nuclear medicine imaging (PETT), Radiology, Vol. 114, pp. 89–98, 1975.

[21]Phelps, M. E., Hoffman, E. J., Mullani, N. A., and Ter-Pogossian, M. M., Application of annihilation coincidence detection to transaxial reconstruction tomography, J. Nucl. Med., Vol. 16, pp. 210–214, 1975.

[22]Hoffman, E. J., Phelps, M. E., Mullani, N. A., Higgins, C. S., and TerPogossian, M. M., Design and performance characteristics of a whole body transaxial tomography, J. Nucl. Med., Vol. 17, pp. 493–503, 1976.

[23]Phelps, M. E., Hoffman, E. J., Coleman, R. E., Welch, M. J., Raichle, M. E., Weiss, E. S., Sober, B. E., and Ter-Pogossian, M. M., Tomographic

106

Wong

images of blood pool and perfusion in brain and heart, J. Nucl. Med.,

Vol. 17, pp. 603–612, 1976.

[24]Phelps, M. E., Hoffman, E. J., Mullani, N. A., and Ter-Pogossian, M. M., Design considerations for a positron emission transaxial tomograph (PETT III), IEEE Trans. Nucl. Sci., Vol. 23, pp. 516–522, 1976.

[25]Phelps, M. E., Hoffman, E. J., Huang, S. C., and Kuhl, D. E., ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals, J. Nucl. Med., Vol. 19, pp. 635–647, 1978.

[26]Bailey, D. L., Data acquisition and performance characterization in PET, In: Positron Emission Tomography: Basic Science and Clinical Practice, Valk, P. E., Bailey, D. L., Townsend, D. W., and Maisey, M. N., eds., Springer, London, pp. 69–90, 2003.

[27]Cho, Z. K. and Farhiki, M. R., Bismuth germanate as a potential scintillator in positron cameras, J. Nucl. Sci., Vol. 18, pp. 840–844, 1977.

[28]Casey, M. E. and Nutt, R., A multicrystal two dimensional BGO detector system for positron emission tomography, IEEE Trans. Nucl. Sci., Vol. 33, pp. 460–463, 1986.

[29]Defrise, M. and Kinahan, P. E., Data acquisition and image reconstruction for 3D PET, In: The Theory and Practice of 3D PET, Bendriem, B. and Townsend, D. W., eds., Kluwer Academic, Dordrecht, pp. 1–53, 1998.

[30]Kak, A. C. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.

[31]Ramachandran, G. N. and Lakshminarayanan, A. V., Three-dimensional reconstruction from radiograph and electron micrographs: Application of convolutions instead of Fourier transform, Proc. Natl. Acad. Sci. U.S.A., Vol. 67, pp. 2236–2240, 1971.

[32]Budinger, T. F., Derenzo, S. E., Greenberg, W. L., Gullberg, G. T., and Huesman, R. H., Quantitative potentials of dynamic emission computed tomography, J. Nucl. Med., Vol. 19, pp. 309–315, 1978.

Quantitative Functional Imaging with Positron Emission Tomography

107

[33]Herman, G., Image Reconstruction from Projections, Academic Press, New York, 1980.

[34]Llacer, J., Veklerov, E., Baxter, L. R., Grafton, S. T., Griffeth, L. K., Hawkins, R. A., Hoh, C. K., Mazziotta, J. C., Hoffman, E. J., and Metz,

C.E., Results of a clinical operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies, J. Nucl. Med., Vol. 34, pp. 1198–1203, 1993.

[35]Wilson, D. W. and Tsui, B. M. W., Noise properties of filteredbackprojection and ML-EM reconstructed emission tomographic images, IEEE Trans. Nucl. Sci., Vol. 40, pp. 1198–1203, 1993.

[36]Hebert, T. and Leahy, R., A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors, IEEE Trans. Med. Imaging, Vol. 8, pp. 194–202, 1989.

[37]Green, P. J., Bayesian reconstruction from emission tomography data using a modified EM algorithm, IEEE Trans. Med. Imaging, Vol. 9, pp. 84–93, 1990.

[38]Shepp, L. A. and Vardi, Y., Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging, Vol. MI-1, pp. 113– 122, 1982.

[39]Lange, K. and Carson, R. E., EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr., Vol. 8, pp. 306–316, 1984.

[40]Hudson, H. M. and Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data, IEEE Trans. Med. Imaging, Vol. 13, pp. 601–609, 1994.

[41]Meikle, S. R., Hutton, B. F., Bailey, D. L., Hooper, P. K., and Fulham,

M.J., Accelerated EM reconstruction in total body PET: potential for improving tumour detectability, Phys. Med. Biol., Vol. 39, pp. 1689– 1704, 1994.

[42]Cherry, S. R., Meikle, S. R., and Hoffman, E. J., Correction and characterization of scattered events in three-dimensional PET using scanners with retractable septa, J. Nucl. Med., Vol. 34, pp. 671–678, 1996.

108

Wong

[43]Thompson, C. J., The problem of scatter correction in positron volume imaging, IEEE Trans. Med. Imaging, Vol. 12, pp. 124–132, 1993.

[44]Bailey, D. L. and Meikle, S. R., A convolution-substraction scatter correction method for 3D PET, Phys. Med. Biol., Vol. 39, pp. 411–424, 1994.

[45]Levin, C. S., Dahlbom, M., and Hoffman, E. J., A Monte Carlo correction for the effect of Compton scattering in 3D PET brain imaging, IEEE Trans. Nucl. Sci., Vol. 42, pp. 1181–1185, 1995.

[46]Huang, S. C., Hoffman, E. J., Phelps, M. E., and Kuhl, D. E., Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction, J. Comput. Assist. Tomogr., Vol. 3, pp. 804–814, 1979.

[47]Dahlbom, M. and Hoffman, E. J., Problems in signal-to-noise ratio for attenuation correction in high-resolution PET, IEEE Trans. Nucl. Sci., Vol. 34, pp. 288–293, 1987.

[48]Hooper, P. K., Meikle, S. R., Eberl, S., and Fulham, M. J., Validation of post injection transmission measurements for attenuation correction in neurologic FDG PET studies, J. Nucl. Med., Vol. 37, pp. 128–136, 1996.

[49]Huang, S. C., Carson, R. E., Phelps, M. E., Hoffman, E. J., Schelbert, H. R., and Kuhl, D. E., A boundary method for attenuation correction in positron computed tomography, J. Nucl. Med., Vol. 22, pp. 627–637, 1981.

[50]Xu, E. Z., Mullani, N. A., Gould, K. L., and Anderson, W. L., A segmented attenuation correction for PET, J. Nucl. Med., Vol. 32, pp. 161–165, 1991.

[51]Meikle, S. R., Dahlbom, M., and Cherry, S. R., Attenuation correction using count-limited transmission data in positron emission tomography, J. Nucl. Med., Vol. 34, pp. 143–144, 1993.

[52]Phelps, M. E., Hoffman, E. J., and Huang, S. C., Effect of positron range on spatial resolution, J. Nucl. Med., Vol. 16, pp. 649–652, 1975.

Quantitative Functional Imaging with Positron Emission Tomography

109

[53]Hoffman, E. J. and Phelps, M. E., Positron emission tomography: Principles and quantitation, In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R., eds., Raven Press, New York, pp. 237–286, 1986.

[54]Derenzo, S. E., Budinger, T. F., and Vuletich, T., High resolution positron emission tomography using small bismuth germanate crystals and individual photosensors, IEEE Trans. Nucl. Sci., Vol. NS-30, pp. 665–670, 1983.

[55]Wong, W. H., Mullani, N. A., and Wardworth, G., Characteristics of small barium fluoride (BaF2) scintillation for high intrinsic resolution time-of-flight positron emission tomography, IEEE Trans. Nucl. Sci., Vol. 31, pp. 381–386, 1984.

[56]Takagi, K. and Fukazawa, T., Cerium-activated Gd2SiO5 single crystal scintillator, Appl. Phys. Lett., Vol. 42, pp. 43–45, 1983.

[57]Melcher, C. L. and Schweitzer, J. S., Cerium-doped lutetium oxyorthosilicate: A fast, efficient, new scintillator, IEEE Trans. Nucl. Sci., Vol. 39, pp. 502–505, 1992.

[58]Brooks, R. A. and Di Chiro, G., Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging, Phys. Med. Biol., Vol. 21, pp. 689–732, 1976.

[59]Farquhar, T. H., Chatziioannou, A., Chinn, G., Dahlbom, M., and Hoffman, E. J., An investigation of filter choice for filtered back-projection reconstruction in PET, IEEE Trans. Nucl. Sci., Vol. 45, pp. 1133–1137, 1998.

[60]Levin, C. S. and Hoffman, E. J., Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution, Phys. Med. Biol., Vol. 44, pp. 781–799, 1999.

[61]Finkelstein, L. and Carson, E. R., Mathematical Modelling of Dynamic Biological Systems, 2nd ed., Research Studies Press Ltd, Letchworth, 1984.

110

Wong

[62]Huang, S. C. and Phelps, M. E., Principles of tracer kinetic modeling in positron emission tomography and autoradiography, In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R., eds., Raven Press, New York, pp. 287–346, 1986.

[63]Godfrey, K., Compartmental Models And Their Application, Academic Press, New York, 1983.

[64]Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York, 1974.

[65]Huang, S. C., Barrio, J. R., Yu, D. C., Chen, B., Grafton, S., and Melega, W. P., Modeling approach for separating blood time-activity curves in positron emission tomographic studies, Phys. Med. Biol., Vol. 36, pp. 749–761, 1991.

[66]Iida, H., Jones, T., and Miura, S., Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography, J. Nucl. Med., Vol. 34, pp. 1333–1340, 1993.

[67]Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method, Ann. Neurol., Vol. 6, pp. 371–388, 1979.

[68]Huang, S. C., Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C., and Kuhl, D. E., Noninvasive determination of local cerebral metabolic rate of glucose in man, Am. J. Physiol., Vol. 238, pp. E69–E82, 1980.

[69]Carson, R. E., Yan, Y., and Shrager, R., Absolute cerebral blood flow with 15O-water and PET: Determination without a measured input function, In: Quantification of Brain Function using PET, Myers, R., Cunningham, V., Bailey, D., and Jones, T., eds., Academic Press, San Diego, pp. 185–190, 1996.

[70]Di Bella, E. V. R., Clackdoyle, R., and Gullberg, G. T., Blind estimation of compartmental model parameters, Phys. Med. Biol., Vol. 44, pp. 765–780, 1999.

Quantitative Functional Imaging with Positron Emission Tomography

111

[71]Wong, K. P., Feng, D., Meikle, S. R., and Fulham, M. J., Simultaneous estimation of physiological parameters and the input function—In vivo

PET data, IEEE Trans. Inform. Technol. Bromed., Vol. 5, pp. 67–76, 2001.

[72]Logan, J., Fowler, J. S., Volkow, N. D., Wang, G. J., Ding, Y. S., and Alexoff, D. L., Distribution volume ratios without blood sampling from graphical analysis of PET data, J. Cereb. Blood Flow Metab., Vol. 16, pp. 834–840, 1996.

[73]Lammertsma, A. A. and Hume, S. P., Simplified reference tissue model for PET receptor studies, Neuroimage, Vol. 4, pp. 153–158, 1996.

[74]Gunn, R. N., Lammertsma, A. A., Hume, S. P., and Cunningham, V. J., Parametric imaging of ligand-receptor binding in PET using a simplified reference region model, Neuroimage, Vol. 6, pp. 279–287, 1997.

[75]Patlak, C. S., Blasberg, R. G., and Fenstermacher, J., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data, J. Cereb. Blood Flow Metab., Vol. 3, pp. 1–7, 1983.

[76]Patlak, C. S. and Blasberg, R. G., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data: Generalizations, J. Cereb. Blood Flow Metab., Vol. 5, pp. 584–590, 1985.

[77]Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendriem, B., Gatley, S. J., and Christman, D. R., Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]- (-)-cocaine PET studies in human subjects, J. Cereb. Blood Flow Metab., Vol. 10, pp. 740–747, 1990.

[78]Yokoi, T., Iida, H., Itoh, H., and Kanno, I., A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine- 123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET, J. Nucl. Med., Vol. 34, No. 3, pp. 498–505, 1993.

112

Wong

[79]Yokoi, T., Iida, H., and Kanno, I., A comparative study of the three fast algorithms to estimate cerebral blood flow and distribution volume using N-isopropyl-p-[123I]iodoamphetamine and two SPECT scans, Phys. Med. Biol., Vol. 40, pp. 1499–1515, 1995.

[80]Blomqvist, G., On the construction of functional maps in positron emission tomography, J. Cereb. Blood Flow Metab., Vol. 4, pp. 629–632, 1984.

[81]Kety, S. S. and Schmidt, C. F., The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure, and normal values, J. Clin. Invest., Vol. 27, pp. 476–483, 1948.

[82]Evans, A. C., A double integral form of the three-compartmental, four- rate-constant model for faster generation of parameter maps, J. Cereb. Blood Flow Metab., Vol. 7, No. suppl., p. S453, 1987.

[83]Feng, D., Wang, Z., and Huang, S. C., A study on statistically reliable and computationally efficient algorithms for the measurement of local cerebral blood flow with positron emission tomography, IEEE Trans. Med. Imaging, Vol. 12, pp. 182–188, 1993.

[84]Feng, D. and Ho, D., Parametric imaging algorithm for multicompartmental models dynamic studies with positron emission tomography, In: Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Uemura, K., Lassen, N. A., Jones, T., and Kanno, I., eds., Elsevier Science, Amsterdam, pp. 127–136, 1993.

[85]Feng, D., Huang, S. C., Wang, Z., and Ho, D., An unbiased parametric imaging algorithm for non-uniformly sampled biomedical system parameter estimation, IEEE Trans. Med. Imaging, Vol. 15, No. 4, pp. 512–518, 1996.

[86]Chen, K., Lawson, M., Reiman, E., Cooper, A., Feng, D., Huang, S. C., Bandy, D., Ho, D., Yun, L. S., and Palant, A., Generalized linear least squares method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET, IEEE Trans. Med. Imaging, Vol. 17, pp. 236–243, 1998.

Quantitative Functional Imaging with Positron Emission Tomography

113

[87]Cunningham, V. J. and Jones, T., Spectral analysis of dynamic PET studies, J. Cereb. Blood Flow Metab., Vol. 13, pp. 15–23, 1993.

[88]Lawson, C. L. and Hanson, R. J., Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[89]Meikle, S. R., Matthews, J. C., Cunningham, V. J., Bailey, D. L., Livieratos, L., Jones, T., and Price, P., Parametric image reconstruction using spectral analysis of PET projection data, Phys. Med. Biol., Vol. 43, pp. 651–666, 1998.

[90]Carson, E. R., Cobelli, C., and Finkelstein, L., The Mathematical Modeling of Metabolic and Endocrine Systems: Model Formulation, Identification and Validation, John Wiley and Sons, New York, 1983.

[91]Fagarasan, J. T. and DiStefano, J. J., III, Hidden pools, hidden modes and visible repeated eigenvalues in compartmental models, Math. Biosci., Vol. 82, pp. 87–113, 1986.

[92]Huang, S. C., Carson, R. E., and Phelps, M. E., Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique, J. Cereb. Blood Flow Metab., Vol. 2, pp. 99–108, 1982.

[93]Alpert, N. M., Eriksson, L., Chang, J. Y., Bergstrom, M., Litton, J. E., Correia, J. A., Bohm, C., Ackerman, R. H., and Taveras, J. M., Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography, J. Cereb. Blood Flow Metab., Vol. 4, pp. 28–34, 1984.

[94]Carson, R. E., Huang, S. C., and Green, M. V., Weighted integration method for local cerebral blood flow measurement with positron emission tomography, J. Cereb. Blood Flow Metab., Vol. 6, pp. 245–258, 1986.

[95]Yokoi, T., Kanno, I., Iida, H., Miura, S., and Uemura, K., A new approach of weighted integration technique based on accumulated images using dynamic PET and H152 O, J. Cereb. Blood Flow Metab., Vol. 11, pp. 492– 501, 1991.