Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kluwer - Handbook of Biomedical Image Analysis Vol

.2.pdf
Скачиваний:
102
Добавлен:
10.08.2013
Размер:
25.84 Mб
Скачать

50

Leemput et al.

Methods in Biomedical Image Analysis, MMBIA’00, pp. 162–169,

2000.

[38]Likar, B., Viergever, M., and Pernus, F., Retrospective correction of MR intensity inhomogeneity by information minimization, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, Lecture Notes in Computer Science, Vol. 1935, Springer, Berlin, pp. 375–384, 2000.

[39]Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., Automated model-based tissue classification of MR images of the brain, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 897–908, 1999.

[40]Li, S., Markov Random Field Modeling in Computer Vision, Computer Science Workbench Series, Springer, Berlin, 1995.

[41]Ising, E., Beitrag zur theorie des ferromagnetismus, Zeitschrift fur¨ Physik, Vol. 31, pp. 253–258, 1925.

[42]Descombes, X., Mangin, J.-F., Pechersky, E., and Sigelle, M., Fine structure preserving markov model for image processing, In: Proceedings of the 9th Scandinavian Conference on Image Analysis, SCIA’95, pp. 349–356, 1995.

[43]Zhang, J., The mean-field theory in EM procedures for Markov random fields, IEEE Trans. Signal Process., Vol. 40, No. 10, pp. 2570–2583, 1992.

[44]Langan, D. A., Molnar, K. J., Modestino, J. W., and Zhang, J., Use of the mean-field approximation in an EM-based approach to unsupervised stochastic model-based image segmentation, In: Proceedings of ICASSP’92, San Fransisco, CA, March 1992, Vol. 3, pp. 57–60.

[45]Kwan, R. K.-S., Evans, A. C., and Pike, G. B., MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, Vol. 18, No. 11, pp. 1085–1097, 1999. Available at http://www.bic.mni.mcgill.ca/brainweb/.

[46]Dice, L. R., Measures of the amount of ecologic association between species, Ecology, Vol. 26, No. 3, pp. 297–302, 1945.

Model-Based Brain Tissue Classification

51

[47]Zijdenbos, A. P., Dawant, B. M., and Margolin, R. A., Intensity correction and its effect on measurement variability in the computer-aided analysis of MRI, In: Proceedings of 9th International Symposium and Exhibition on Computer Assisted Radiology, CAR’95, Springer, Berlin, pp. 216–221, June 1995.

[48]Park, J., Gerig, G., Chakos, M., Vandermeulen, D., and Lieberman, J., Neuroimaging of psychiatry disease: Reliable and efficient automatic brain tissue segmentation for increased sensitivity, Schizophrenia Res., Vol. 49, p. 163, 1994.

[49]Rajapakse, J. and Krugge, F., Segmentation of MR images with intensity inhomogeneities, Image Vision Comput., Vol. 16, pp. 165–180, 1998.

[50]Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., and FernandezBouzas, A., An accurate and efficient Bayesian method for automatic segmentation of brain MRI, IEEE Trans. Med. Imaging, Vol. 21, No. 8,

pp.934–945, 2002.

[51]Niessen, W., Vincken, K., Weickert, J., ter Haar Romeny, B., and Viergever, M., Multiscale segmentation of three-dimensional MR brain images, Int. J. Comput. Vision, Vol. 31, No. 2/3, pp. 185–202, 1999.

[52]Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P., Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Trans. Med. Imaging, Vol. 20, No. 8,

pp.677–688, 2001.

[53]Huber, P., Robust Statistics, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1981.

[54]Zhuang, X., Huang, Y., Palaniappan, K., and Zhao, Y., Gaussian mixture density modeling, decomposition, and applications, IEEE Trans. Image Process., Vol. 5, No. 9, pp. 1293–1302, 1996.

[55]Chung, A. and Noble, J., Statistical 3D vessel segmentation using a rician distribution, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 82–89, 1999.

52

Leemput et al.

[56]Hoaglin, D., Mosteller, F., and Tukey, J., eds., Understanding Robust and Explanatory Data Analysis, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1983.

[57]European project on Brain Morphometry, BIOMORPH, EU-BIOMED2 Project No. BMH4-CT96-0845, 1996–1998.

[58]Udupa, J., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M., and Grossman, R., Multiple sclerosis lesion quantification using fuzzyconnectedness principles, IEEE Trans. Med. Imaging, Vol. 16, No. 5,

pp.598–609, 1997.

[59]Johnston, B., Atkins, M., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 154–169, 1996.

[60]Zijdenbos, A., Dawant, B. M., Margolin, R. A., and Palmer, A. C., Morphometric analysis of white matter lesions in MR images: Method and validation, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 716–724, 1994.

[61]Kamber, M., Shinghal, R., Collins, D., Francis, G., and Evans, A., Modelbased 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Trans. Med. Imaging, Vol. 14, No. 3, pp. 442–453, 1995.

[62]Kikinis, R., Guttmann, C., Metcalf, D., Wells, W., III, Ettinger, G., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Technical aspects, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 519–530, 1999.

[63]Warfield, S., Dengler, J., Zaers, J., Guttmann, C., Wells, W., III, Ettinger, G., Hiller, J., and Kikinis, R., Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions, J. Image Guided Surg., Vol. 1, No. 6, pp. 326–338, 1995.

[64]Zijdenbos, A., Evans, A., Riahi, F., Sled, J., Chui, J., and Kollokian, V., Automatic quantification of multiple sclerosis lesion volume using stereotaxic space, In: Proceedings of Visualization in Biomedical Computing, VBC’96, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1131,

pp.439–448, 1996.

Model-Based Brain Tissue Classification

53

[65]Zijdenbos, A., Forghani, R., and Evans, A., Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI’98, Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, pp. 439–448, 1998.

[66]Guttmann, C., Kikinis, R., Anderson, M., Jakab, M., Warfield, S., Killiany, R., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Reproducibility, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 509–518, 1999.

[67]Evans, A., Frank, J., Antel, J., and Miller, D., The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques, Ann. Neurol., Vol. 41, No. 1, pp. 125–132, 1997.

[68]Filippi, M., Horsfield, M., Tofts, P., Barkhof, F., Thompson, A., and Miller, D., Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis, Brain, Vol. 118, pp. 1601–1612, 1995.

[69]Antel, S. B., Bernasconi, A., Bernasconi, N., Collins, D. L., Kearney, R. E., Shinghal, R., and Arnold, D. L., Computational models of MRI characteristics of focal cortical dyaplasia improve lesion detection, NeuroImage, Vol. 17, No. 4, pp. 1755–1760, 2002.

[70]Antel, S. B., Collins, D. L., Bernasconi, N., Andermann, F., Shinghal, R., Kearney, R. E., Arnold, D. L., and Bernasconi, A., Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis, NeuroImage, Vol. 19, No. 4, pp. 1784–1759, 2003.

[71] Ashburner, J., Friston, K., Holmes, A., and Poline, J.-B., Statistical Parametric Mapping, The Wellcome Department of Cognitive Neurology, University College London, London. Available at http://www.fil.ion.ucl.ac.uk/spm/.

[72]Srivastava, S., Vandermeulen, D., Maes, F., Dupont, P., van Paesschen, W., and Suetens, P., An automated 3D algorithm for neo-cortical thickness measurement, In: Proceedings of Medical Image Computing and

54

Leemput et al.

Computer-Assisted Intervention, MICCAI’03, Lecture Notes in Com-

puter Science, Springer, Berlin, Vol. 2879, pp. 488–495.

[73]DeLisi, L., Tew, W., Shu-Hong, X., Hoff, A. L., Sakuma, M., Kushner, M., Lee, G., Shedlack, K., Smith, A. M., and Grimson, R., A prospective follow-up study of brain morphology and cognition in first-epsiode schizophrenic patients: Preliminary findings, Biol. Psychiatry, Vol. 38, No. 2, pp. 349–360, 1995.

[74]Crow, T., Ball, J., Bloom, S., Brown, R., Bruton, C. J., Colter, N., Firth,

C.D., Johnstone, E. C., Owens, D. E., and Roberts, G. W., Schizophrenia as an anomaly of development of cerebral asymmetry, Arch. Gen. Psychiatry, Vol. 46, pp. 1145–1150, 1989.

[75]Maes, F., Van Leemput, K., DeLisi, L. E., Vandermeulen, D., and Suetens, P., Quantification of cerebral grey and white matter asymmetry from MRI, In: Proceedings of Medical Image Computing and ComputerAssisted Intervention, MICCAI’99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 348–357, 1999.

[76]Marais, P., Guillemaud, R., Sakuma, M., Zisserman, A., and Brady, M., Visualising cerebral asymmetry, In: Visualization in Biomedical Computing, Vol. 1131 of Lecture Notes in Computer Science, Hohne,¨ K. H. and Kikinis, R. eds., Homburg, Germany, Springer, pp. 411–416, 1999.

[77]Liu, Y., Collins, R. T., Rothfus, W. E., Automatic Bilateral symmetry (midsagittal) plane extraction from pathological 3D neuroradiological images, In: Medical Imaging 1998: Image Processing, Vol. 3338 of Proc. SPIE, Hanson, K. M. ed., San Diego, CA, USA, pp. 1528–1539, 1998.

[78]Prima, S., Thirion, J.-P., Subsol, G., and Roberts, N., Automatic analysis of normal brain dissymmetry of males and females in MR images, In: Medical Image Computing and Computer-Assisted Intervention (MICCAI’98), Vol. 1496 of Lecture Notes in Computer Science, Wells,

W.M., Colchester, A., and Delp, S., eds., Cambridge, MA, USA, Springer, pp. 770–779, 1998.

Model-Based Brain Tissue Classification

55

[79]Ashburner, J. and Friston, K., Voxel-based morphometry—The methods, NeuroImage, Vol. 11, No. 6, pp. 805–821, 2000.

[80]Pohl, K. M., Wells, W. M., III, Guimond, A., Kasai, K., Shenton, M. E., Kikinis, R., Grimson, W. E. L., and Warfield, S. K., Incorporating nonrigid registration into expectation maximization algorithm to segment MR images, In: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part I, Springer-Verlag, Berlin, pp. 564–571, 2002.

[81]Wyatt, P. P. and Noble, J. A., MAP MRF joint segmentation and registration of medical images, Med. Image Anal., Vol. 7, No. 4, pp. 539–552, 2003.

[82]D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P., An information theoretic approach for non-rigid image registration using voxel class probabilities, In: Proceedings of the Second International Workshop on Biomedical Image Registration, WBIR 2003, Lecture Notes in Computer Science, Vol. 2717, pp. 122–131, Springer, 2003.

[83]Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A., and Evans, A., Enhancement of MR images using registration for signal averaging, J. Comput Tomography, Vol. 22, 1998.

[84]Kochunov, P., Lancaster, J., Thompson, P., Toga, A., Brewer, P., Hardies, J., and Fox, P., An optimized individual target brain in the Talairach coordinate system, NeuroImage, Vol. 17, 2002.

[85]Vandermeulen, D., Descombes, X., Suetens, P., and Marchal, G., Unsupervised regularized classification of multi-spectral MRI, Technical Report KUL/ESAT/MI2/9608, Katholieke Universiteit Leuven, Feb. 1996.

Chapter 2

Supervised Texture Classification for Intravascular Tissue Characterization

Oriol Pujol1 and Petia Radeva1

2.1 Introduction

Vascular disease, stroke, and arterial dissection or rupture of coronary arteries are considered some of the main causes of mortality in present days. The behavior of the atherosclerotic lesions depends not only on the degree of lumen narrowing but also on the histological composition that causes that narrowing. Therefore, tissue characterization is a fundamental tool for studying and diagnosing the pathologies and lesions associated to the vascular tree.

Although important, tissue characterization is an arduous task that requires manual identification by specialists of the tissues and proper tissue visualization. Intravascular ultrasound (IVUS) imaging is a well suited visualization technique for such task as it provides a cross-sectional cut of the coronary vessel, unveiling its histological properties and tissue organization.

IVUS is a widespread technique accepted in clinical practice to fill up the lack of information provided by classical coronary angiography on vessel morphology. It has a prominent role evaluating the artery lesion after a interventional coronary procedure such as balloon dilation of the vessel, stent implantation, laser angioplasty, or atherectomy.

IVUS displays the morphology and histological properties of a cross section of a vessel [1]. Figure 2.1 shows a good example of different tissues in an

1 Computer Vision Center, Universitat Autonoma` de Barcelona, Campus UAB, Edifici O,

08193 Bellaterra (Barcelona), Spain

57

58

Pujol and Radeva

Figure 2.1: Typical IVUS image presenting different kind of tissues.

IVUS image. It is generally accepted that the different kind of plaque tissues distinguishable in IVUS images is threefold: Calcium formation is characterized by a very high echoreflectivity and absorbtion of the emitted pulse from the transducer. This behavior produces a deep shadowing effect behind calcium plaques. In the figure, calcium formation can be seen at three o’clock and from five to seven o’clock. Fibrous plaque has medium echoreflectivity resembling that of the adventitia. This tissue has a good transmission coefficient allowing the pulse to travel through the tissue, and therefore, providing a wider range of visualization. This kind of tissue can be observed from three o’clock to five o’clock. Soft plaque or Fibro-Fatty plaque is the less echoreflective of the three kind of tissues. It also has good transmission coefficient allowing to see what is behind this kind of plaque. Observing the figure, a soft plaque configuration is displayed from seven o’clock to three o’clock.

Because of time consumption and subjectivity of the classification depending on the specialist, there is a crescent interest of the medical community in developing automatic tissue characterization procedures. This is accentuated because the procedure for tissue classification by physicians implies the manual analysis of IVUS images.

The problem of automatic tissue characterization has been widely studied in different medical fields. The unreliability of gray-level only methods to achieve good discrimination among the different kind of tissues forces us to use more complex measures, usually based on texture analysis. Texture analysis has played a prominent role in computer vision to solve tissue characterization problems in medical imaging [2–9].

Several researching groups have reported different approximations to characterize the tissue of IVUS image.

Supervised Texture Classification for Intravascular Tissue Characterization

59

Vandenberg in [10] base their contribution on reducing the noise of the image to have a clear representation of the tissue. The noise reduction is achieved by averaging sets of images when the least variance in diameter of the IVUS occurs. At the end, a fuzzy logic based expert is set to discriminate among the tissues.

Nailon and McLaughlin devote several efforts to IVUS tissue characterization. In [11] they use classic Haralick texture statistics to discriminate among tissues. In [12] the authors propose the use of co-occurrence matrices texture analysis and fractal texture analysis to characterize intravascular tissue. Thirteen features plus fractal dimension derived from Brownian motion are used for this task. The conclusion shows that fractal dimension is unable to discriminate between calcium and fibrous plaque but helps in fibrous versus lipidic plaque. On the other hand, co-occurrence matrices are well suited for the overall classification. In [13], it is stated that the discriminative power of fractal dimension is poor when trying to separate fibrotic tissue, lipidic tissue, and foam cells. The method used is based on fractal dimension estimation techniques (box-counting, brownian motion, and frequency domain).

Spencer in [14] center their work on spectral analysis. Different features are compared: mean power, maximum power, spectral slope, and 0 Hz interception. The work concludes with the 0 Hz spectral slope as the most discriminative feature.

Dixon in [15] use co-occurrence matrices and discriminant analysis to evaluate the different kind of tissues in IVUS images.

Ahmed and Leyman in [16] use a radial transform and correlation for pattern matching. The features used are higher order statistics such as kurtosis, skewness, and up to four order cumulants. The results provided appear to have fairly good visual recognition rate.

The work of de Korte and van der Steen [17] opens a new proposal based on assessing the local strain of the atherosclerotic vessel wall to identify different plaque components. This very promising technique, called elastography, is based on estimating the radial strain by performing cross-correlation analysis on pairs of IVUS at a certain intracoronary pressure.

Probably, one of the most interesting work in this field is the one provided by Zhang and Sonka in [18]. This work is much more complex trying to evaluate the full morphology of the vessel. Detecting the plaque and adventitia borders and characterizing the different kind of tissues, the tissue discrimination is done using a combination of well-known techniques previously reported in the

60

Pujol and Radeva

literature, co-occurrence matrices and fractal dimension from brownian motion, and adding two more strategies to the amalgam of features: run-length measures and radial profile. The experiments assess the accuracy of the method quantitatively.

Most of the literature found in the tissue characterization matters use texture features, co-occurrence matrices being the most popular of all feature extractors. Further work has been done trying to use other kind of texture feature extractors and IVUS images, and although not specifically centered on tissue characterization, the usage of different texture features in plaque border assessment is reported, which can be easily extrapolated to tissue characterization. In [19], derivatives of Gaussian; wavelets, co-occurrence matrices, Gabor filters, and accumulation local moments are evaluated and used to classify blood from plaque. The work highlights the discriminative power of co-occurrence matrices derivatives of Gaussian and accumulation local moments. Other works such as [20] provide some hints on how to achieve a fast framework based on local binary patterns and fast high-performance classifiers. This last line of investigation overcomes one of the most significant drawbacks of the texture based tissue characterization systems, the speed. Texture descriptors are inherently slow to be computed. With the proposal of the feature extractor based on local binary patterns a good discriminative power is ensured as well as a fast technique for tissue characterization.

Whatever method we use in the tissue characterization task, we follow an underlying main methodology. First, we need to extract some features describing the tissue variations. This first step is critical since the features chosen have to be able to describe each kind of tissue in a unique way so that it cannot be confused with another one. In this category of feature extraction we should consider the co-occurrence matrix measures, local binary patterns, etc. The second step is the classification of the extracted features. Depending on the complexity of the feature data some methods will fit better than others. In most cases, high-dimensional spaces are generated, so we should consider the use of dimensionality reduction methods such as principal component analysis or

Fisher linear discriminant analysis. Either a dimensionality reduction process is needed or not, this step will require a classification procedure. This procedure can be supervised, if we provide samples of each tissue to be classified so that the system “knows” a priori what the tissues are, or unsupervised, if we allow the system to try to find which are the different kind of tissues by itself. In