
- •Г.И.Загарий, н.О.Ковзель, в.С.Коновалов, в.И.Моисеенко, в.И.Поддубняк, а.И.Стасюк
- •Часть 2. Характеристики микроконтроллеров и плк
- •Рецензенты:
- •Isbn – 5–7763–0384–2
- •Isbn – 966–7561–23–2
- •Isbn – 966-7561-23-2
- •Isbn – 5–7763–0384-2
- •Содержание
- •Введение
- •Раздел 1
- •1 Микроконтроллеры фирмы Atmel
- •1.1 Микроконтроллеры серии ат89, совместимые с mcs-51™
- •1.2 Микроконтроллеры avr серии ат90 с risc-архитектурой
- •2. Микроконтроллер aDμC812 семейства MicroConverter™ фирмы analog devices
- •3 Микроконтроллеры sx18ac/sx28ac фирмы scenix
- •4 Микроконтроллеры фирмы motorola
- •5 Микроконтроллеры семейства z8 фирмы zilog
- •6 Микроконтроллеры фирмы holtek
- •7 Рiс – микроконтроллеры фирмы microchip
- •7.1 Микроконтроллер pic16f84
- •7.1.1 Архитектура микроконтроллера pic16f84
- •7.1.2 Типы корпусов и исполнения
- •7.1.3 Назначение выводов
- •7.1.4 Регистры pic16f84
- •7.1.5 Прямая и косвенная адресация регистров
- •7.1.6 Модуль таймера/счетчика
- •7.1.7 Предварительный делитель
- •7.1.8 Регистр слова состоянияStatus
- •7.1.8.1 Программные флаги регистра слова состояния
- •7.1.8.2 Аппаратные флаги состояния
- •7.1.9 Регистр option
- •7.1.11 Организация встроенного пзу
- •7.1.12 Программный счетчик и адресация пзу
- •7.1.13 Стек и возвраты из подпрограмм
- •7.1.14 Данные в eeprom
- •7.1.15 Управление eeprom Управляющие регистры для eeprom
- •Регистры eecon1 и eecon2
- •7.1.16 Организация прерываний
- •Внешнее прерывание
- •Прерывание от переполнения счетчика/таймера
- •Прерывание от порта rb
- •Прерывание от eeprom
- •7.1.17 Регистры (порты) ввода/вывода
- •7.1.18 Использование портов ввода/вывода ra и rb Организация двунаправленных портов
- •Последовательное обращение к портам ввода/вывода
- •7.1.19 Специальные функции
- •Сторожевой таймер wdt
- •Тактовый генератор
- •Таймер сброса dtr
- •Биты конфигурации
- •Защита программы от считывания
- •Режим пониженного энергопотребления
- •7.2 Обзор команд и обозначения
- •7.2.1 Описание команд
- •7.3Технология разработки и отладки рабочих программ для омк рiс16/17
- •7.3.1 Правила записи программ на языке Ассемблера
- •Операция
- •Операнд
- •Директивы Ассемблера
- •7.3.2 Структура рабочей программы
- •7.3.3 Преобразование исходного текста рабочей программы в объектный модуль
- •7.4 Интегрированная среда разработки рабочих программ mplab для омк pic
- •7.4.1 Назначение и основные функциональные возможности mplab
- •7.4.2 Краткая характеристика основных программ Редактор mplab
- •Ассемблер mpasm
- •Компилятор mplab-c
- •Программный симулятор-отладчик mplab-sim
- •7.4.3 Главное окно средыMplab Главное меню mplab
- •МенюFile
- •МенюProject
- •МенюEdit
- •МенюDebug (отладка)
- •Меню picstart plus (меню программирования)
- •МенюOptions (параметры)
- •МенюTools
- •7.4.4 Инструментальная панельMplab
- •7.4.5 Строка состояния mplab
- •7.5 Пример разработки программы с использованием mplab
- •7.5.1 Постановка задачи и разработка алгоритма ее решения
- •7.5.2 Написание исходного текста программы
- •Раздел 2
- •8. Характеристики программируемых логических контроллеров
- •8.1. Контроллеры семейства модикон
- •8.1.1. Контроллер tsx 07 Nano
- •Варианты конфигураций
- •Импульсные выходы
- •Программное обеспечение
- •Контрольные вопросы:
- •8.1.2. Контроллер tsx Momentum Общая характеристика
- •Концепция построения
- •Архитектура tsx Momentum
- •Подключение tsx Momentum к сети Modbus Plus
- •Коммуникационный адаптер для сети Interbus
- •Коммуникационный адаптер для сети Profibus dp
- •Коммуникационный адаптер для сети fipio
- •Коммуникационный адаптер для сети Ethernet I/o
- •Базовые модули ввода – вывода
- •Заключение
- •Контрольные вопросы
- •8.1.3. Микроконтроллер tsx 37 Micro Общая характеристика
- •Базовое исполнение tsx 37-10
- •Дисплейный блок
- •Базовое исполнение tsx 37-21 и tsx 37-22
- •Источники питания
- •Коммуникационные возможности
- •Заключение
- •Контрольные вопросы
- •8.2. КонтроллерыTsxQuantum Общая характеристика
- •Источники питания
- •Модули ввода-вывода
- •Модули интерфейса Quantum
- •Заключение
- •Контрольные вопросы
- •8.3. Контроллеры Siemens
- •8.3.1. КонтроллерSimaticS7-200
- •Центральные процессоры
- •Входы и выходы контроллеров s7-200
- •Коммуникационный модуль
- •8.3.2.Контроллер Simatic s7-300
- •Центральные процессоры
- •Сигнальные модули
- •Функциональные модули
- •Коммуникационные модули
- •Заключение
- •Контрольные вопросы
- •8.3.3. Контроллер Simatic s7-400
- •Центральные процессоры
- •Модули ввода-вывода
- •Функциональные модули
- •Коммуникационные процессоры
- •Блоки питания
- •Заключение
- •Контрольные вопросы
- •Раздел 3
- •9. Разработка микропроцессорных систем железнодорожной автоматики
- •9.1. Постановка задачи
- •9.2. Характеристика входных и выходных сигналов.
- •9.3. Разработка структуры системы
- •9.4. Конфигурация цепей ввода-вывода
- •9.5. Определение необходимого количества модулей ввода-вывода
- •9.6.Принципиальные и монтажные схемы
- •Индивидуальные задания
- •10. Примеры практической реализации микропроцессорных систем
- •10.1.Микропроцессорная диспетчерская централизация
- •Объекты контроля
- •Объекты управления
- •10.2.Микропроцессорный маршрутный набор электрической централизации
- •10.2.1 Постановка задачи
- •10.2.2 Общая структура системы управления.
- •10.2.3 Расчет количества входных и выходных сигналов.
- •Расчет потребного количества выходов
- •Управление стрелкой
- •Перечень объектов контроля
- •Расчет потребного количества входов
- •Выбор конфигурации программируемого логического контроллера
- •Разработка структуры информационного взаимодействия компонентов системы
- •Программируемые контроллеры для систем управления.
- •Часть 2. Характеристики микроконтроллеров и плк
- •61052, Харьков, ул. Красноармейская, 7, тел. 24-22-98.
- •61052, Харків, вул. Червоноармійська, 7, тел. 24-22-98.
Тактовый генератор
Для микроконтроллеров семейства PIC возможно использование четырех типов тактового генератора:
1. XT – кварцевый резонатор;
2. HS – высокочастотный кварцевый резонатор;
3. LP – микропотребляющий кварцевый резонатор;
4. RC-RC цепочка.
Задание типа используемого тактового генератора осуществляется в процессе программирования микроконтроллера. В случае задания вариантов XT, HS и LP к микросхеме подключается кварцевый или керамический резонатор либо внешний источник тактовой частоты, а в случае задания варианта RC – резистор и конденсатор. Конечно, керамический и, особенно, кварцевый резонатор значительно точнее и стабильнее, но если высокая точность отсчета времени не нужна, использование RC-генератора может уменьшить стоимость и габариты устройства.
Схема сброса
Микроконтроллеры
семейства PIC используют внутреннюю
схему сброса по включению питания в
сочетании с таймером запуска генератора,
что позволяет в большинстве ситуаций
обойтись без традиционного резистора
и конденсатора. Достаточно просто
подключить вход
к источнику питания. Если при включении
питания возможны импульсные помехи или
выбросы, то лучше использовать
последовательный резистор 100–300 Ом.
Если питание нарастает очень медленно
(медленнее, чем за 70 мс), либо работа
происходит на очень низких тактовых
частотах, то необходимо использовать
традиционную внешнюю схему сброса из
резистора и конденсатора.
Таймер сброса dtr
Таймер сброса DTR предназначен для поддержания контроллера в сброшенном состоянии в течение 18 мс после включения питания для стабилизации работы генератора.
Биты конфигурации
Микроконтроллеры семейства РIС имеют четыре (пять) битов установки конфигурации, которые хранятся в ПЗУ программ и устанавливаются на этапе программирования (записи кода программы в ПЗУ) микроконтроллера. Эти биты могут быть запрограммированы (читается как 0) или оставлены незапрограммированными (читается как 1) для выбора подходящего варианта конфигурации устройства. Эти биты расположены в ПЗУ программ по адресу 2007h (для PIC16F84). Пользователю следует помнить, что этот адрес находится ниже области кодов и недоступен программе. Биты FOSC0 и FOSC1 определяют тип генератора, бит WDTE разрешает использование сторожевого таймера WDT, бит PWRTE разрешает выдержку времени после детектирования включения питания, а бит СР предназначен для защиты программы от считывания.
Защита программы от считывания
Для применений, связанных с защитой информации, каждый PIC имеет бит секретности, который может быть запрограммирован для запрещения считывания программного кода и ПЗУ данных. При программировании сначала записывается программный код, проверяется на правильность записи, а затем устанавливается бит секретности. Если попытаться почитать ПЗУ программ с установленным битом секретности, то для PIC16F84 старшие 8 разрядов кода будут считываться как 0, а младшие 4 разряда будут представлять собой скремблированные 12 разрядов команды. Для PIC16F84 аналогично 7 старших разрядов будут считываться нулями, а 7 младших разрядов будут представлять собой скремблированные 14 разрядов команды. Электрически перепрограммируемое ПЗУ данных PIC16F84 при установке бита защиты также не может быть считано.