
- •Г.И.Загарий, н.О.Ковзель, в.С.Коновалов, в.И.Моисеенко, в.И.Поддубняк, а.И.Стасюк
- •Часть 2. Характеристики микроконтроллеров и плк
- •Рецензенты:
- •Isbn – 5–7763–0384–2
- •Isbn – 966–7561–23–2
- •Isbn – 966-7561-23-2
- •Isbn – 5–7763–0384-2
- •Содержание
- •Введение
- •Раздел 1
- •1 Микроконтроллеры фирмы Atmel
- •1.1 Микроконтроллеры серии ат89, совместимые с mcs-51™
- •1.2 Микроконтроллеры avr серии ат90 с risc-архитектурой
- •2. Микроконтроллер aDμC812 семейства MicroConverter™ фирмы analog devices
- •3 Микроконтроллеры sx18ac/sx28ac фирмы scenix
- •4 Микроконтроллеры фирмы motorola
- •5 Микроконтроллеры семейства z8 фирмы zilog
- •6 Микроконтроллеры фирмы holtek
- •7 Рiс – микроконтроллеры фирмы microchip
- •7.1 Микроконтроллер pic16f84
- •7.1.1 Архитектура микроконтроллера pic16f84
- •7.1.2 Типы корпусов и исполнения
- •7.1.3 Назначение выводов
- •7.1.4 Регистры pic16f84
- •7.1.5 Прямая и косвенная адресация регистров
- •7.1.6 Модуль таймера/счетчика
- •7.1.7 Предварительный делитель
- •7.1.8 Регистр слова состоянияStatus
- •7.1.8.1 Программные флаги регистра слова состояния
- •7.1.8.2 Аппаратные флаги состояния
- •7.1.9 Регистр option
- •7.1.11 Организация встроенного пзу
- •7.1.12 Программный счетчик и адресация пзу
- •7.1.13 Стек и возвраты из подпрограмм
- •7.1.14 Данные в eeprom
- •7.1.15 Управление eeprom Управляющие регистры для eeprom
- •Регистры eecon1 и eecon2
- •7.1.16 Организация прерываний
- •Внешнее прерывание
- •Прерывание от переполнения счетчика/таймера
- •Прерывание от порта rb
- •Прерывание от eeprom
- •7.1.17 Регистры (порты) ввода/вывода
- •7.1.18 Использование портов ввода/вывода ra и rb Организация двунаправленных портов
- •Последовательное обращение к портам ввода/вывода
- •7.1.19 Специальные функции
- •Сторожевой таймер wdt
- •Тактовый генератор
- •Таймер сброса dtr
- •Биты конфигурации
- •Защита программы от считывания
- •Режим пониженного энергопотребления
- •7.2 Обзор команд и обозначения
- •7.2.1 Описание команд
- •7.3Технология разработки и отладки рабочих программ для омк рiс16/17
- •7.3.1 Правила записи программ на языке Ассемблера
- •Операция
- •Операнд
- •Директивы Ассемблера
- •7.3.2 Структура рабочей программы
- •7.3.3 Преобразование исходного текста рабочей программы в объектный модуль
- •7.4 Интегрированная среда разработки рабочих программ mplab для омк pic
- •7.4.1 Назначение и основные функциональные возможности mplab
- •7.4.2 Краткая характеристика основных программ Редактор mplab
- •Ассемблер mpasm
- •Компилятор mplab-c
- •Программный симулятор-отладчик mplab-sim
- •7.4.3 Главное окно средыMplab Главное меню mplab
- •МенюFile
- •МенюProject
- •МенюEdit
- •МенюDebug (отладка)
- •Меню picstart plus (меню программирования)
- •МенюOptions (параметры)
- •МенюTools
- •7.4.4 Инструментальная панельMplab
- •7.4.5 Строка состояния mplab
- •7.5 Пример разработки программы с использованием mplab
- •7.5.1 Постановка задачи и разработка алгоритма ее решения
- •7.5.2 Написание исходного текста программы
- •Раздел 2
- •8. Характеристики программируемых логических контроллеров
- •8.1. Контроллеры семейства модикон
- •8.1.1. Контроллер tsx 07 Nano
- •Варианты конфигураций
- •Импульсные выходы
- •Программное обеспечение
- •Контрольные вопросы:
- •8.1.2. Контроллер tsx Momentum Общая характеристика
- •Концепция построения
- •Архитектура tsx Momentum
- •Подключение tsx Momentum к сети Modbus Plus
- •Коммуникационный адаптер для сети Interbus
- •Коммуникационный адаптер для сети Profibus dp
- •Коммуникационный адаптер для сети fipio
- •Коммуникационный адаптер для сети Ethernet I/o
- •Базовые модули ввода – вывода
- •Заключение
- •Контрольные вопросы
- •8.1.3. Микроконтроллер tsx 37 Micro Общая характеристика
- •Базовое исполнение tsx 37-10
- •Дисплейный блок
- •Базовое исполнение tsx 37-21 и tsx 37-22
- •Источники питания
- •Коммуникационные возможности
- •Заключение
- •Контрольные вопросы
- •8.2. КонтроллерыTsxQuantum Общая характеристика
- •Источники питания
- •Модули ввода-вывода
- •Модули интерфейса Quantum
- •Заключение
- •Контрольные вопросы
- •8.3. Контроллеры Siemens
- •8.3.1. КонтроллерSimaticS7-200
- •Центральные процессоры
- •Входы и выходы контроллеров s7-200
- •Коммуникационный модуль
- •8.3.2.Контроллер Simatic s7-300
- •Центральные процессоры
- •Сигнальные модули
- •Функциональные модули
- •Коммуникационные модули
- •Заключение
- •Контрольные вопросы
- •8.3.3. Контроллер Simatic s7-400
- •Центральные процессоры
- •Модули ввода-вывода
- •Функциональные модули
- •Коммуникационные процессоры
- •Блоки питания
- •Заключение
- •Контрольные вопросы
- •Раздел 3
- •9. Разработка микропроцессорных систем железнодорожной автоматики
- •9.1. Постановка задачи
- •9.2. Характеристика входных и выходных сигналов.
- •9.3. Разработка структуры системы
- •9.4. Конфигурация цепей ввода-вывода
- •9.5. Определение необходимого количества модулей ввода-вывода
- •9.6.Принципиальные и монтажные схемы
- •Индивидуальные задания
- •10. Примеры практической реализации микропроцессорных систем
- •10.1.Микропроцессорная диспетчерская централизация
- •Объекты контроля
- •Объекты управления
- •10.2.Микропроцессорный маршрутный набор электрической централизации
- •10.2.1 Постановка задачи
- •10.2.2 Общая структура системы управления.
- •10.2.3 Расчет количества входных и выходных сигналов.
- •Расчет потребного количества выходов
- •Управление стрелкой
- •Перечень объектов контроля
- •Расчет потребного количества входов
- •Выбор конфигурации программируемого логического контроллера
- •Разработка структуры информационного взаимодействия компонентов системы
- •Программируемые контроллеры для систем управления.
- •Часть 2. Характеристики микроконтроллеров и плк
- •61052, Харьков, ул. Красноармейская, 7, тел. 24-22-98.
- •61052, Харків, вул. Червоноармійська, 7, тел. 24-22-98.
7.1.13 Стек и возвраты из подпрограмм
Кристалл PIC16F84 имеет восьмиуровневый аппаратный стек шириной 13 бит. Область стека не принадлежит ни к программной области ни к области данных, а указатель стека пользователю недоступен. Текущее значение программного счетчика посылается в стек, когда выполняется команда CALL или производится обработка прерывания. При выполнении процедуры возврата из подпрограммы (команды RETLW, RETFIE или RETURN), в программный счетчик выгружается содержимое стека. Регистр PCLATH (0Ah, 8Ah) не изменяется при операциях со стеком.
7.1.14 Данные в eeprom
Долговременная память данных EEPROM позволяет прочитать и записать байт информации. При записи байта автоматически стирается предыдущее его значение и записываются новые данные (стирание перед записью). Все эти операции производит встроенный автомат записи EEPROM. Содержимое ячеек этой памяти сохраняется при выключении питания.
Кристалл PIC16F84 имеет память данных 64х8 EEPROM бит, которая позволяет запись и чтение во время нормальной работы (во всем диапазоне питающих напряжений). Эта память не принадлежит области регистров ОЗУ. Доступ к ней осуществляется через два регистра: EEDATA <08h>, который содержит в себе восьмибитовые данные для чтения/записи и EEADR <09h>, который содержит в себе адрес ячейки, к которой идет обращение. Дополнительно имеется два управляющих регистра: EECON1 <88h> и EECON2 <89h>.
При считывании данных из памяти EEPROM необходимо записать требуемый адрес в EEADR регистр и затем установить бит RD EECON1<0> в единицу. Данные появятся в следующем командном цикле в регистре EEDATA и могут быть прочитаны. Данные в регистре EEDATA защелкиваются.
При записи в память EEPROM необходимо сначала записать требуемый адрес в EEADR регистр и данные в EEDATA регистр. Затем выполнить специальную последовательность команд, производящую непосредственную запись:
movlv 55h
movwf EECON2
movlv 0AAh
movwf EECON2
bsf EECON1,WR ;установить бит WR, начать запись
Во время выполнения этого участка программы, все прерывания должны быть запрещены для точного выполнения временной диаграммы. Время записи – примерно 10 мс. Фактическое время записи будет изменяться в зависимости от напряжения, температуры и индивидуальных свойств кристалла. В конце записи бит WR автоматически обнуляется, а флаг завершения записи EEIF, он же запрос на прерывание, устанавливается.
Для предотвращения случайных записей в память данных предусмотрен специальный бит WREN в регистре EECON1. Рекомендуется держать бит WREN выключенным, кроме тех случаев, когда нужно обновить память данных. Более того, кодовые сегменты, которые устанавливают бит WREN и те, которые выполняют запись, должны храниться на различных адресах, чтобы избежать случайного выполнения их обоих при сбое программы.
7.1.15 Управление eeprom Управляющие регистры для eeprom
Название |
Функция |
Адрес |
Значение после включения |
EEDATA |
EEPROM регистр данных |
08h |
XXXX XXXX |
EEADR |
EEPROM регистр адреса |
09h |
XXXX XXXX |
EECON1 |
EEPROM 1-й управляющий регистр |
88h |
0 0 0 0 X 0 0 0 |
EECON2 |
EEPROM 2-й управляющий регистр |
89h |
– |