Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДидаТОграфия-2 ТС- Метод. основы.doc
Скачиваний:
12
Добавлен:
10.05.2015
Размер:
2.83 Mб
Скачать

3.1.4. Евклидово пространство. Нормирование

Является частным случаем линейного пространства над чи­словым полем, если определена операция вида :S  S К.

Применяя нормирование для всех векторов, переходят к нормированным пространствам.

Способы задания нормы:

а) х = x1 + x2  + ... + xn , т.е. суммарная длина всех векторовxi;

б) х=max{xi }) }.

Свойства нормы:

а) х0;х= 0 при х = 0.; 0K;

б) *х =*х ; К; х S;

в) х+yх+y- неравенство треугольника.

Единичный вектор, если х =1.

3.2. Пространство, как система базирования

"Система отсчета (система координат) - это схема правил, описывающих каждый математический объект (точку) некоторого класса (пространства) соответствующим упорядоченным множе­ством чисел (компонент, координат): х12;…xn (n-размерность пространства)". [18].

Метасистема координат непосредственно не связана с ма­тематическим объектом и служит базой для описания объекта на­блюдений в среде; она образует групповой базис (базу) объекта наблюдений (Г или G - знак группового базирования). Например, студент -x, учебная группа -У, семестр - z, задание по КПР- s:

G (х,у,z,s...).

Поместить объект наблюдений в пространство означает оп­ределить его систему отсчета,ввести понятия меры, расстояния, длины, нормы..., т.е. иметь возможность воспользоваться матема­тическими свойствами различных систем координат.

Преобразование координат допускает две интерпретации: активную (alibi) и пассивную(alias).[18, с.362].

Пусть задан математический объект точкой

x = (х1. . . . хn); x' = Т(х);xa1 xa2 ….xan

где

xb1 xb2 ….xbn .

При активной точке зрения операция Т ставит в соответст­вие каждому объекту xa одного пространства объектхb другого пространства.

При пассивной точке зрения операция Т вводится как но­вое описание объекта X в новых координатах.

Активный подход позволяет абстрактные математические отношения представлять числовыми соотношениями. Пассивный приводит к замене системы отсчета, что часто упрощает решение задачи. Это равносильно переходу к новому базису.

Примеры

1 . Переход к логарифмической шкале отсчета.

2. Введение логарифмической мерыК. Шеннона для оценки систем­ной функции выбора.

Множество систем отсчета называется системой мер. Пере­ход от одной системы отсчета к другой связан с преобразованием пассивного типа.

Например, решение задачи матричных игр 2 2 методом линейного программирования (геометрически), в пространстве S- игры, на поверхности отклика или в проекциях [20].

Системы координат, применяемые для физических объек­тов, включаются в процесс преобразования данных эксперимента.

Схема направленного процесса преобразования исходных данных наблюдений состоит из ряда блоков:

1. Блока формирования исходных данных.

2. Блоков составления систем уравнений: топологических и

компонентных.

3. Блока преобразования уравнений в различных системах координат.

3.1. В однородной системе координат. Получают уравнения сечений и контуров на графе схемымногополюсника.

3.2. В неоднородных и сокращенных системах координат. Получают уравнения переменных состояния.

Примеры применения систем координат на физических объектах разной сложности приведены в литературе [2,с.414 -500].

Задачи и упражнения

1. Определите пространство состояний и переходов, приме­няемое в системах массового обслуживания для следующих сис­тем в обозначениях по Кендалу: М/М/1/0, М/М/n/m, G/G/3/3. Опишите математические свойства подобных про­странств [21,33,68].

2. Известна задача о ханойской башне [20]. Приведите про­странство состояний и переходов, описывающее решение этой за­дачи. Определите метрику и расстояние в данном пространстве.

3. Определите понятия однородной, неоднородной и со­кращенной систем координат, применяемых для описания физи­ческих систем (см.[2, с.413]).

4. Исследуйте изоморфизм физических систем, построен­ных на понятиях поперечной и продольной переменных полюс­ного графа [2, с. 392]. Определите математические свойства вве­денных переменных и их конкретные формы для различных фи­зических объектов.

5. Известны алгоритмы оптимизации задач, решаемых на сетях и графах [66,67]. Приведите примеры задач и определите их топологию.

6. Множество слов длины n из различных знаков (букв, цифр, пробелов...) при соответствующей метрике образуют метри­ческое пространство [2, с. 168].

Предложите соответствующую метрику для расстояния (х,у), гдех, у - отдельные слова, например:

- позиции с одинаковыми символами;

- количество позиций с различными символами;

а) проверьте выполнимость аксиом метрического простран­ства;

б) задайте несколько слов из n символов и найдите рас­стояние между ними;

в) постройте матрицу расстояний для нескольких кортежей из чисел {0,1} длинойm;

г) проверьте свойства метрики на конкретных примерах.

7. Приведите топологии на множествах из ограниченного числа элементов: 1,2,3,4,5.

8. Покажите, что композиция объектов образует линейное пространство при задании законов композиции.