Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Энергетическое представление в случае дискретного спектра_2.doc
Скачиваний:
37
Добавлен:
16.04.2013
Размер:
2.64 Mб
Скачать

§113 Микро- и макро- параметры систем.

В связи с тем, что системы обладают большим числом степеней свободы, и с тем что мы перешли на язык теории вероятностей, мы рассмотрим этот вопрос.

Каждое состояние системы описывается набором динамических переменных и.

В ансамблях таких систем, из большого числа параметров, которые можно построить на 2n – переменных и, можно выделить небольшое число параметров, которые важны для описания системы. Введём такой некоторый параметр:

.

Выясняется, что эта величина в зависимости от t может принимать различные значения, т.е. является функцией от t. Она является микропараметром системы, т.к. он определяет систему на её части, на подсистеме. Наряду с системой можно рассмотреть подсистему. Наряду с этой величиной вводится параметр аналогичный, который определяется в более продолжительный момент времени и характеризующие систему в целом – макропараметр.

Стационарность. Будем рассматривать в этом курсе стационарные явления или стационарные системы свойства которых не меняются во времени, т.е. не зависят от времени. Т.е. если рассматривать ось t, то для стационарных сред начало наблюдения за системой можно выбрать в любой точке оси t:

t

И для таких процессов начальные условия динамических переменных не оказывают влияние на результат, т.е. начальные условия могут быть отброшены, т.к. часы пускаем в любой момент времени.

Итак в стационарных системах:

  1. время начала отсчёта можно перемещать по оси времени;

  2. начальные условия, оказывается, не влияют;

  3. граничные условия, оказывается, не влияют на систему, если система стационарна.

Через граничные условия внешнее воздействие проникает . И через некоторое время действует

на систему, действие идёт через точки, находящиеся в очень узком приграничном слое. Т.к. этих мало по сравнению с точками системы, то граничные условия можно не учитывать.

Это обстоятельство можно использовать при рассмотрении двух подсистем. Взаимодействие подсистем в достаточно малом промежутке времени не оказывает влияние на подсистемы, т.к. точек на границепренебрежимо мало по сравнению с самими подсистемами. Выясняется, что микро- и макро- параметры А, если наблюдать за ними в течении большого промежутка времени, то в течении длительного

большей части этого промежутка времени, система обладает конкретными или близкими к нему параметрами. Если усреднить этот параметр по времени, то он не будет отличаться от конкретного параметра;

в качестве результата наблюдения А, принимается значение <среднее по времени А>

A = {A} =

Если Т – время наблюдения, то это правильно,

Но Т – очень велико, поэтому пишут предел

Это предлагают воспринимать как наблюдаемую величину (в теории).

§114 Свойство эргодичности системы.

Понятие эргодичности.

Итак мы рассмотрели такие функции:

A = A[,]

Параметр А испытывает флукткации, отклонения от некоторого среднего значения, в течении времени. Наряду с зависимостью А от t можно ввести характеристику  вероятность того, что А лежит в интервале А ~ A+dA:

dW(A) = ω(A)da

Как получить эту вероятность? Очевидно, если у нас стоит: (1) А=<A(t) < A+da, то мы можем подсчитать все промежутки времени их сумму Σdti , в течении которых Аi(ti) попадает в интервал (1): например ti < ti < ti+dti . Т.е. мы подсчитаем длительность пребывания А в слое А ~ A+dA

Оказывается, если dt одинаковые, то Σdti ~ dt

Но оказывается еще: Σdt I ~ T, где Т – время наблюдения.

Тогда dW =Σdti (2)

Зная эту величину мы можем найти значение любой функции времени, любой наблюдаемой величины. Т.е. мы нашли плотность вероятности ω(t) = dW/dt ; t – это не случайная величина, а параметр; а случайной величиной является A(t). С помощью функции (2) можно найти среднее по времени значение для наблюдамой величины: {A} = (это определение среднего по времени)

Мы писали

dW =Σdti – это вероятность того, что случайная величина A(t) лежит в пределах А=<A(t) < A+da. Таким способом можно рассматривать 2 способа усреднения.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.