- •Contents
- •Send Us Your Comments
- •Preface
- •What's New in PL/SQL?
- •1 Overview of PL/SQL
- •Advantages of PL/SQL
- •Tight Integration with SQL
- •Support for SQL
- •Better Performance
- •Higher Productivity
- •Full Portability
- •Tight Security
- •Support for Object-Oriented Programming
- •Understanding the Main Features of PL/SQL
- •Block Structure
- •Variables and Constants
- •Processing Queries with PL/SQL
- •Declaring PL/SQL Variables
- •Control Structures
- •Writing Reusable PL/SQL Code
- •Data Abstraction
- •Error Handling
- •PL/SQL Architecture
- •In the Oracle Database Server
- •In Oracle Tools
- •2 Fundamentals of the PL/SQL Language
- •Character Set
- •Lexical Units
- •Delimiters
- •Literals
- •Comments
- •Declarations
- •Using DEFAULT
- •Using NOT NULL
- •Using the %TYPE Attribute
- •Using the %ROWTYPE Attribute
- •Restrictions on Declarations
- •PL/SQL Naming Conventions
- •Scope and Visibility of PL/SQL Identifiers
- •Assigning Values to Variables
- •Assigning Boolean Values
- •Assigning a SQL Query Result to a PL/SQL Variable
- •PL/SQL Expressions and Comparisons
- •Logical Operators
- •Boolean Expressions
- •CASE Expressions
- •Handling Null Values in Comparisons and Conditional Statements
- •Summary of PL/SQL Built-In Functions
- •3 PL/SQL Datatypes
- •PL/SQL Number Types
- •PL/SQL Character and String Types
- •PL/SQL National Character Types
- •PL/SQL LOB Types
- •PL/SQL Boolean Types
- •PL/SQL Date, Time, and Interval Types
- •Datetime and Interval Arithmetic
- •Avoiding Truncation Problems Using Date and Time Subtypes
- •Overview of PL/SQL Subtypes
- •Using Subtypes
- •Converting PL/SQL Datatypes
- •Explicit Conversion
- •Implicit Conversion
- •Choosing Between Implicit and Explicit Conversion
- •DATE Values
- •RAW and LONG RAW Values
- •4 Using PL/SQL Control Structures
- •Overview of PL/SQL Control Structures
- •Testing Conditions: IF and CASE Statements
- •Using the IF-THEN Statement
- •Using the IF-THEN-ELSE Statement
- •Using the IF-THEN-ELSIF Statement
- •Using the CASE Statement
- •Guidelines for PL/SQL Conditional Statements
- •Controlling Loop Iterations: LOOP and EXIT Statements
- •Using the LOOP Statement
- •Using the EXIT Statement
- •Using the EXIT-WHEN Statement
- •Labeling a PL/SQL Loop
- •Using the WHILE-LOOP Statement
- •Using the FOR-LOOP Statement
- •Sequential Control: GOTO and NULL Statements
- •Using the GOTO Statement
- •Using the NULL Statement
- •5 Using PL/SQL Collections and Records
- •What Is a Collection?
- •Understanding Nested Tables
- •Understanding Varrays
- •Understanding Associative Arrays (Index-By Tables)
- •How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays
- •Choosing Which PL/SQL Collection Types to Use
- •Choosing Between Nested Tables and Associative Arrays
- •Choosing Between Nested Tables and Varrays
- •Defining Collection Types
- •Declaring PL/SQL Collection Variables
- •Initializing and Referencing Collections
- •Referencing Collection Elements
- •Assigning Collections
- •Comparing Collections
- •Using PL/SQL Collections with SQL Statements
- •Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
- •Manipulating Individual Collection Elements with SQL
- •Using Multilevel Collections
- •Using Collection Methods
- •Checking If a Collection Element Exists (EXISTS Method)
- •Counting the Elements in a Collection (COUNT Method)
- •Checking the Maximum Size of a Collection (LIMIT Method)
- •Finding the First or Last Collection Element (FIRST and LAST Methods)
- •Looping Through Collection Elements (PRIOR and NEXT Methods)
- •Increasing the Size of a Collection (EXTEND Method)
- •Decreasing the Size of a Collection (TRIM Method)
- •Deleting Collection Elements (DELETE Method)
- •Applying Methods to Collection Parameters
- •Avoiding Collection Exceptions
- •What Is a PL/SQL Record?
- •Using Records as Procedure Parameters and Function Return Values
- •Assigning Values to Records
- •Comparing Records
- •Inserting PL/SQL Records into the Database
- •Updating the Database with PL/SQL Record Values
- •Restrictions on Record Inserts/Updates
- •Querying Data into Collections of Records
- •6 Performing SQL Operations from PL/SQL
- •Overview of SQL Support in PL/SQL
- •Data Manipulation
- •Transaction Control
- •SQL Functions
- •SQL Pseudocolumns
- •SQL Operators
- •Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)
- •Overview of Implicit Cursor Attributes
- •Using PL/SQL Records in SQL INSERT and UPDATE Statements
- •Issuing Queries from PL/SQL
- •Selecting At Most One Row: SELECT INTO Statement
- •Selecting Multiple Rows: BULK COLLECT Clause
- •Looping Through Multiple Rows: Cursor FOR Loop
- •Performing Complicated Query Processing: Explicit Cursors
- •Querying Data with PL/SQL
- •Querying Data with PL/SQL: Implicit Cursor FOR Loop
- •Querying Data with PL/SQL: Explicit Cursor FOR Loops
- •Overview of Explicit Cursors
- •Using Subqueries
- •Using Correlated Subqueries
- •Writing Maintainable PL/SQL Queries
- •Using Cursor Attributes
- •Overview of Explicit Cursor Attributes
- •Using Cursor Variables (REF CURSORs)
- •What Are Cursor Variables (REF CURSORs)?
- •Why Use Cursor Variables?
- •Declaring REF CURSOR Types and Cursor Variables
- •Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
- •Avoiding Errors with Cursor Variables
- •Restrictions on Cursor Variables
- •Using Cursor Expressions
- •Restrictions on Cursor Expressions
- •Example of Cursor Expressions
- •Constructing REF CURSORs with Cursor Subqueries
- •Overview of Transaction Processing in PL/SQL
- •Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
- •How Oracle Does Implicit Rollbacks
- •Ending Transactions
- •Setting Transaction Properties with SET TRANSACTION
- •Overriding Default Locking
- •Doing Independent Units of Work with Autonomous Transactions
- •Advantages of Autonomous Transactions
- •Controlling Autonomous Transactions
- •Using Autonomous Triggers
- •Calling Autonomous Functions from SQL
- •7 Performing SQL Operations with Native Dynamic SQL
- •What Is Dynamic SQL?
- •Why Use Dynamic SQL?
- •Using the EXECUTE IMMEDIATE Statement
- •Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings
- •Building a Dynamic Query with Dynamic SQL
- •Examples of Dynamic SQL for Records, Objects, and Collections
- •Using Bulk Dynamic SQL
- •Using Dynamic SQL with Bulk SQL
- •Examples of Dynamic Bulk Binds
- •Guidelines for Dynamic SQL
- •When to Use or Omit the Semicolon with Dynamic SQL
- •Improving Performance of Dynamic SQL with Bind Variables
- •Passing Schema Object Names As Parameters
- •Using Duplicate Placeholders with Dynamic SQL
- •Using Cursor Attributes with Dynamic SQL
- •Passing Nulls to Dynamic SQL
- •Using Database Links with Dynamic SQL
- •Using Invoker Rights with Dynamic SQL
- •Using Pragma RESTRICT_REFERENCES with Dynamic SQL
- •Avoiding Deadlocks with Dynamic SQL
- •Backward Compatibility of the USING Clause
- •8 Using PL/SQL Subprograms
- •What Are Subprograms?
- •Advantages of PL/SQL Subprograms
- •Understanding PL/SQL Procedures
- •Understanding PL/SQL Functions
- •Using the RETURN Statement
- •Declaring Nested PL/SQL Subprograms
- •Passing Parameters to PL/SQL Subprograms
- •Actual Versus Formal Subprogram Parameters
- •Using Positional, Named, or Mixed Notation for Subprogram Parameters
- •Specifying Subprogram Parameter Modes
- •Using Default Values for Subprogram Parameters
- •Overloading Subprogram Names
- •Guidelines for Overloading with Numeric Types
- •Restrictions on Overloading
- •How Subprogram Calls Are Resolved
- •How Overloading Works with Inheritance
- •Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
- •Advantages of Invoker's Rights
- •Specifying the Privileges for a Subprogram with the AUTHID Clause
- •Who Is the Current User During Subprogram Execution?
- •How External References Are Resolved in Invoker's Rights Subprograms
- •Overriding Default Name Resolution in Invoker's Rights Subprograms
- •Granting Privileges on Invoker's Rights Subprograms
- •Using Roles with Invoker's Rights Subprograms
- •Using Views and Database Triggers with Invoker's Rights Subprograms
- •Using Database Links with Invoker's Rights Subprograms
- •Using Object Types with Invoker's Rights Subprograms
- •Using Recursion with PL/SQL
- •What Is a Recursive Subprogram?
- •Calling External Subprograms
- •Creating Dynamic Web Pages with PL/SQL Server Pages
- •Controlling Side Effects of PL/SQL Subprograms
- •Understanding Subprogram Parameter Aliasing
- •9 Using PL/SQL Packages
- •What Is a PL/SQL Package?
- •What Goes In a PL/SQL Package?
- •Example of a PL/SQL Package
- •Advantages of PL/SQL Packages
- •Understanding The Package Specification
- •Referencing Package Contents
- •Understanding The Package Body
- •Some Examples of Package Features
- •Private Versus Public Items in Packages
- •Overloading Packaged Subprograms
- •How Package STANDARD Defines the PL/SQL Environment
- •About the DBMS_ALERT Package
- •About the DBMS_OUTPUT Package
- •About the DBMS_PIPE Package
- •About the UTL_FILE Package
- •About the UTL_HTTP Package
- •Guidelines for Writing Packages
- •Separating Cursor Specs and Bodies with Packages
- •10 Handling PL/SQL Errors
- •Overview of PL/SQL Runtime Error Handling
- •Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
- •Advantages of PL/SQL Exceptions
- •Summary of Predefined PL/SQL Exceptions
- •Defining Your Own PL/SQL Exceptions
- •Declaring PL/SQL Exceptions
- •Scope Rules for PL/SQL Exceptions
- •Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
- •How PL/SQL Exceptions Are Raised
- •Raising Exceptions with the RAISE Statement
- •How PL/SQL Exceptions Propagate
- •Reraising a PL/SQL Exception
- •Handling Raised PL/SQL Exceptions
- •Handling Exceptions Raised in Declarations
- •Handling Exceptions Raised in Handlers
- •Branching to or from an Exception Handler
- •Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
- •Catching Unhandled Exceptions
- •Tips for Handling PL/SQL Errors
- •Continuing after an Exception Is Raised
- •Retrying a Transaction
- •Using Locator Variables to Identify Exception Locations
- •Overview of PL/SQL Compile-Time Warnings
- •PL/SQL Warning Categories
- •Controlling PL/SQL Warning Messages
- •Using the DBMS_WARNING Package
- •11 Tuning PL/SQL Applications for Performance
- •How PL/SQL Optimizes Your Programs
- •When to Tune PL/SQL Code
- •Guidelines for Avoiding PL/SQL Performance Problems
- •Avoiding CPU Overhead in PL/SQL Code
- •Avoiding Memory Overhead in PL/SQL Code
- •Profiling and Tracing PL/SQL Programs
- •Using The Trace API: Package DBMS_TRACE
- •Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)
- •Using the FORALL Statement
- •Retrieving Query Results into Collections with the BULK COLLECT Clause
- •Writing Computation-Intensive Programs in PL/SQL
- •Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
- •Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
- •Restrictions on NOCOPY
- •Compiling PL/SQL Code for Native Execution
- •Setting Up Transformation Pipelines with Table Functions
- •Overview of Table Functions
- •Using Pipelined Table Functions for Transformations
- •Writing a Pipelined Table Function
- •Returning Results from Table Functions
- •Pipelining Data Between PL/SQL Table Functions
- •Querying Table Functions
- •Optimizing Multiple Calls to Table Functions
- •Fetching from the Results of Table Functions
- •Passing Data with Cursor Variables
- •Performing DML Operations Inside Table Functions
- •Performing DML Operations on Table Functions
- •Handling Exceptions in Table Functions
- •12 Using PL/SQL Object Types
- •Overview of PL/SQL Object Types
- •What Is an Object Type?
- •Why Use Object Types?
- •Structure of an Object Type
- •Components of an Object Type
- •What Languages can I Use for Methods of Object Types?
- •How Object Types Handle the SELF Parameter
- •Overloading
- •Changing Attributes and Methods of an Existing Object Type (Type Evolution)
- •Defining Object Types
- •Overview of PL/SQL Type Inheritance
- •Declaring and Initializing Objects
- •Declaring Objects
- •Initializing Objects
- •How PL/SQL Treats Uninitialized Objects
- •Accessing Object Attributes
- •Defining Object Constructors
- •Calling Object Constructors
- •Calling Object Methods
- •Sharing Objects through the REF Modifier
- •Manipulating Objects through SQL
- •Selecting Objects
- •Inserting Objects
- •Updating Objects
- •Deleting Objects
- •13 PL/SQL Language Elements
- •Assignment Statement
- •AUTONOMOUS_TRANSACTION Pragma
- •Blocks
- •CASE Statement
- •CLOSE Statement
- •Collection Methods
- •Collections
- •Comments
- •COMMIT Statement
- •Constants and Variables
- •Cursor Attributes
- •Cursor Variables
- •Cursors
- •DELETE Statement
- •EXCEPTION_INIT Pragma
- •Exceptions
- •EXECUTE IMMEDIATE Statement
- •EXIT Statement
- •Expressions
- •FETCH Statement
- •FORALL Statement
- •Functions
- •GOTO Statement
- •IF Statement
- •INSERT Statement
- •Literals
- •LOCK TABLE Statement
- •LOOP Statements
- •MERGE Statement
- •NULL Statement
- •Object Types
- •OPEN Statement
- •OPEN-FOR Statement
- •OPEN-FOR-USING Statement
- •Packages
- •Procedures
- •RAISE Statement
- •Records
- •RESTRICT_REFERENCES Pragma
- •RETURN Statement
- •ROLLBACK Statement
- •%ROWTYPE Attribute
- •SAVEPOINT Statement
- •SCN_TO_TIMESTAMP Function
- •SELECT INTO Statement
- •SERIALLY_REUSABLE Pragma
- •SET TRANSACTION Statement
- •SQL Cursor
- •SQLCODE Function
- •SQLERRM Function
- •TIMESTAMP_TO_SCN Function
- •%TYPE Attribute
- •UPDATE Statement
- •Where to Find PL/SQL Sample Programs
- •Exercises for the Reader
- •Assigning Character Values
- •Comparing Character Values
- •Inserting Character Values
- •Selecting Character Values
- •Advantages of Wrapping PL/SQL Procedures
- •Running the PL/SQL Wrap Utility
- •Input and Output Files for the PL/SQL Wrap Utility
- •Limitations of the PL/SQL Wrap Utility
- •What Is Name Resolution?
- •Examples of Qualified Names and Dot Notation
- •Differences in Name Resolution Between SQL and PL/SQL
- •Understanding Capture
- •Inner Capture
- •Same-Scope Capture
- •Outer Capture
- •Avoiding Inner Capture in DML Statements
- •Qualifying References to Object Attributes and Methods
- •Calling Parameterless Subprograms and Methods
- •Name Resolution for SQL Versus PL/SQL
- •When Should I Use Bind Variables with PL/SQL?
- •When Do I Use or Omit the Semicolon with Dynamic SQL?
- •How Can I Use Regular Expressions with PL/SQL?
- •How Do I Continue After a PL/SQL Exception?
- •How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
- •How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
- •What Can I Do with Objects and Object Types in PL/SQL?
- •How Do I Create a PL/SQL Procedure?
- •How Do I Input or Output Data with PL/SQL?
- •How Do I Perform a Case-Insensitive Query?
- •Index
- •Symbols
Defining Object Types
For more information, see "Defining Object Constructors" on page 12-13.
Changing Attributes and Methods of an Existing Object Type (Type Evolution)
You can use the ALTER TYPE statement to add, modify, or drop attributes, and add or drop methods of an existing object type:
CREATE TYPE Person_typ AS OBJECT ( name CHAR(20),
ssn CHAR(12),
address VARCHAR2(100));
CREATE TYPE Person_nt IS TABLE OF Person_typ; CREATE TYPE dept_typ AS OBJECT
( mgr Person_typ, emps Person_nt);
CREATE TABLE dept OF dept_typ;
--Add new attributes to Person_typ and propagate the change
--to Person_nt and dept_typ
ALTER TYPE Person_typ ADD ATTRIBUTE (picture BLOB, dob DATE)
CASCADE NOT INCLUDING TABLE DATA;
CREATE TYPE mytype AS OBJECT (attr1 NUMBER, attr2 NUMBER);
ALTER TYPE mytype ADD ATTRIBUTE (attr3 NUMBER),
DROP ATTRIBUTE attr2,
ADD ATTRIBUTE attr4 NUMBER CASCADE;
When a procedure is compiled, it always uses the current version of any object types it references. Existing procedures on the server that reference an object type are invalidated when the type is altered, and are automatically recompiled the next time the procedure is called. You must manually recompile any procedures on the client side that reference types that are altered.
If you drop a method from a supertype, you might have to make changes to subtypes that override that method. You can find if any subtypes are affected by using the CASCADE option of ALTER TYPE; the statement is rolled back if any subtypes override the method. To successfully drop the method from the supertype, you can:
■Drop the method permanently from the subtype first.
■Drop the method in the subtype, then add it back later using ALTER TYPE without the OVERRIDING keyword.
For more information about the ALTER TYPE statement, see Oracle Database SQL Reference. For guidelines about using type evolution in your applications, and options for changing other types and data that rely on those types, see Oracle Database Application Developer's Guide - Object-Relational Features.
Defining Object Types
An object type can represent any real-world entity. For example, an object type can represent a student, bank account, computer screen, rational number, or data structure such as a queue, stack, or list. This section gives several complete examples, which teach you a lot about the design of object types and prepare you to start writing your own.
Currently, you cannot define object types in a PL/SQL block, subprogram, or package. You can define them interactively in SQL*Plus using the SQL statement CREATE TYPE.
Using PL/SQL Object Types 12-9
Defining Object Types
Overview of PL/SQL Type Inheritance
PL/SQL supports a single-inheritance model. You can define subtypes of object types. These subtypes contain all the attributes and methods of the parent type (or supertype). The subtypes can also contain additional attributes and additional methods, and can override methods from the supertype.
You can define whether or not subtypes can be derived from a particular type. You can also define types and methods that cannot be instantiated directly, only by declaring subtypes that instantiate them.
Some of the type properties can be changed dynamically with the ALTER TYPE statement. When changes are made to the supertype, either through ALTER TYPE or by redefining the supertype, the subtypes automatically reflect those changes.
You can use the TREAT operator to return only those objects that are of a specified subtype.
The values from the REF and DEREF functions can represent either the declared type of the table or view, or one or more of its subtypes.
See the Oracle Database Application Developer's Guide - Object-Relational Features for more detail on all these object-relational features.
Examples of PL/SQL Type Inheritance
-- Create a supertype from which several subtypes will be derived. CREATE TYPE Person_typ AS OBJECT ( ssn NUMBER, name VARCHAR2(30), address VARCHAR2(100)) NOT FINAL;
--Derive a subtype that has all the attributes of the supertype,
--plus some additional attributes.
CREATE TYPE Student_typ UNDER Person_typ ( deptid NUMBER, major VARCHAR2(30)) NOT FINAL;
--Because Student_typ is declared NOT FINAL, you can derive
--further subtypes from it.
CREATE TYPE PartTimeStudent_typ UNDER Student_typ( numhours NUMBER);
--Derive another subtype. Because it has the default attribute
--FINAL, you cannot use Employee_typ as a supertype and derive
--subtypes from it.
CREATE TYPE Employee_typ UNDER Person_typ( empid NUMBER, mgr VARCHAR2(30));
--Define an object type that can be a supertype. Because the
--member function is FINAL, it cannot be overridden in any
--subtypes.
CREATE TYPE T AS OBJECT (..., MEMBER PROCEDURE Print(), FINAL MEMBER
FUNCTION foo(x NUMBER)...) NOT FINAL;
--We never want to create an object of this supertype. By using
--NOT INSTANTIABLE, we force all objects to use one of the subtypes
--instead, with specific implementations for the member functions. CREATE TYPE Address_typ AS OBJECT(...) NOT INSTANTIABLE NOT FINAL;
--These subtypes can provide their own implementations of
--member functions, such as for validating phone numbers and
--postal codes. Because there is no "generic" way of doing these
--things, only objects of these subtypes can be instantiated. CREATE TYPE USAddress_typ UNDER Address_typ(...);
12-10 PL/SQL User's Guide and Reference