
- •Contents
- •Send Us Your Comments
- •Preface
- •What's New in PL/SQL?
- •1 Overview of PL/SQL
- •Advantages of PL/SQL
- •Tight Integration with SQL
- •Support for SQL
- •Better Performance
- •Higher Productivity
- •Full Portability
- •Tight Security
- •Support for Object-Oriented Programming
- •Understanding the Main Features of PL/SQL
- •Block Structure
- •Variables and Constants
- •Processing Queries with PL/SQL
- •Declaring PL/SQL Variables
- •Control Structures
- •Writing Reusable PL/SQL Code
- •Data Abstraction
- •Error Handling
- •PL/SQL Architecture
- •In the Oracle Database Server
- •In Oracle Tools
- •2 Fundamentals of the PL/SQL Language
- •Character Set
- •Lexical Units
- •Delimiters
- •Literals
- •Comments
- •Declarations
- •Using DEFAULT
- •Using NOT NULL
- •Using the %TYPE Attribute
- •Using the %ROWTYPE Attribute
- •Restrictions on Declarations
- •PL/SQL Naming Conventions
- •Scope and Visibility of PL/SQL Identifiers
- •Assigning Values to Variables
- •Assigning Boolean Values
- •Assigning a SQL Query Result to a PL/SQL Variable
- •PL/SQL Expressions and Comparisons
- •Logical Operators
- •Boolean Expressions
- •CASE Expressions
- •Handling Null Values in Comparisons and Conditional Statements
- •Summary of PL/SQL Built-In Functions
- •3 PL/SQL Datatypes
- •PL/SQL Number Types
- •PL/SQL Character and String Types
- •PL/SQL National Character Types
- •PL/SQL LOB Types
- •PL/SQL Boolean Types
- •PL/SQL Date, Time, and Interval Types
- •Datetime and Interval Arithmetic
- •Avoiding Truncation Problems Using Date and Time Subtypes
- •Overview of PL/SQL Subtypes
- •Using Subtypes
- •Converting PL/SQL Datatypes
- •Explicit Conversion
- •Implicit Conversion
- •Choosing Between Implicit and Explicit Conversion
- •DATE Values
- •RAW and LONG RAW Values
- •4 Using PL/SQL Control Structures
- •Overview of PL/SQL Control Structures
- •Testing Conditions: IF and CASE Statements
- •Using the IF-THEN Statement
- •Using the IF-THEN-ELSE Statement
- •Using the IF-THEN-ELSIF Statement
- •Using the CASE Statement
- •Guidelines for PL/SQL Conditional Statements
- •Controlling Loop Iterations: LOOP and EXIT Statements
- •Using the LOOP Statement
- •Using the EXIT Statement
- •Using the EXIT-WHEN Statement
- •Labeling a PL/SQL Loop
- •Using the WHILE-LOOP Statement
- •Using the FOR-LOOP Statement
- •Sequential Control: GOTO and NULL Statements
- •Using the GOTO Statement
- •Using the NULL Statement
- •5 Using PL/SQL Collections and Records
- •What Is a Collection?
- •Understanding Nested Tables
- •Understanding Varrays
- •Understanding Associative Arrays (Index-By Tables)
- •How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays
- •Choosing Which PL/SQL Collection Types to Use
- •Choosing Between Nested Tables and Associative Arrays
- •Choosing Between Nested Tables and Varrays
- •Defining Collection Types
- •Declaring PL/SQL Collection Variables
- •Initializing and Referencing Collections
- •Referencing Collection Elements
- •Assigning Collections
- •Comparing Collections
- •Using PL/SQL Collections with SQL Statements
- •Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
- •Manipulating Individual Collection Elements with SQL
- •Using Multilevel Collections
- •Using Collection Methods
- •Checking If a Collection Element Exists (EXISTS Method)
- •Counting the Elements in a Collection (COUNT Method)
- •Checking the Maximum Size of a Collection (LIMIT Method)
- •Finding the First or Last Collection Element (FIRST and LAST Methods)
- •Looping Through Collection Elements (PRIOR and NEXT Methods)
- •Increasing the Size of a Collection (EXTEND Method)
- •Decreasing the Size of a Collection (TRIM Method)
- •Deleting Collection Elements (DELETE Method)
- •Applying Methods to Collection Parameters
- •Avoiding Collection Exceptions
- •What Is a PL/SQL Record?
- •Using Records as Procedure Parameters and Function Return Values
- •Assigning Values to Records
- •Comparing Records
- •Inserting PL/SQL Records into the Database
- •Updating the Database with PL/SQL Record Values
- •Restrictions on Record Inserts/Updates
- •Querying Data into Collections of Records
- •6 Performing SQL Operations from PL/SQL
- •Overview of SQL Support in PL/SQL
- •Data Manipulation
- •Transaction Control
- •SQL Functions
- •SQL Pseudocolumns
- •SQL Operators
- •Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)
- •Overview of Implicit Cursor Attributes
- •Using PL/SQL Records in SQL INSERT and UPDATE Statements
- •Issuing Queries from PL/SQL
- •Selecting At Most One Row: SELECT INTO Statement
- •Selecting Multiple Rows: BULK COLLECT Clause
- •Looping Through Multiple Rows: Cursor FOR Loop
- •Performing Complicated Query Processing: Explicit Cursors
- •Querying Data with PL/SQL
- •Querying Data with PL/SQL: Implicit Cursor FOR Loop
- •Querying Data with PL/SQL: Explicit Cursor FOR Loops
- •Overview of Explicit Cursors
- •Using Subqueries
- •Using Correlated Subqueries
- •Writing Maintainable PL/SQL Queries
- •Using Cursor Attributes
- •Overview of Explicit Cursor Attributes
- •Using Cursor Variables (REF CURSORs)
- •What Are Cursor Variables (REF CURSORs)?
- •Why Use Cursor Variables?
- •Declaring REF CURSOR Types and Cursor Variables
- •Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
- •Avoiding Errors with Cursor Variables
- •Restrictions on Cursor Variables
- •Using Cursor Expressions
- •Restrictions on Cursor Expressions
- •Example of Cursor Expressions
- •Constructing REF CURSORs with Cursor Subqueries
- •Overview of Transaction Processing in PL/SQL
- •Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
- •How Oracle Does Implicit Rollbacks
- •Ending Transactions
- •Setting Transaction Properties with SET TRANSACTION
- •Overriding Default Locking
- •Doing Independent Units of Work with Autonomous Transactions
- •Advantages of Autonomous Transactions
- •Controlling Autonomous Transactions
- •Using Autonomous Triggers
- •Calling Autonomous Functions from SQL
- •7 Performing SQL Operations with Native Dynamic SQL
- •What Is Dynamic SQL?
- •Why Use Dynamic SQL?
- •Using the EXECUTE IMMEDIATE Statement
- •Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings
- •Building a Dynamic Query with Dynamic SQL
- •Examples of Dynamic SQL for Records, Objects, and Collections
- •Using Bulk Dynamic SQL
- •Using Dynamic SQL with Bulk SQL
- •Examples of Dynamic Bulk Binds
- •Guidelines for Dynamic SQL
- •When to Use or Omit the Semicolon with Dynamic SQL
- •Improving Performance of Dynamic SQL with Bind Variables
- •Passing Schema Object Names As Parameters
- •Using Duplicate Placeholders with Dynamic SQL
- •Using Cursor Attributes with Dynamic SQL
- •Passing Nulls to Dynamic SQL
- •Using Database Links with Dynamic SQL
- •Using Invoker Rights with Dynamic SQL
- •Using Pragma RESTRICT_REFERENCES with Dynamic SQL
- •Avoiding Deadlocks with Dynamic SQL
- •Backward Compatibility of the USING Clause
- •8 Using PL/SQL Subprograms
- •What Are Subprograms?
- •Advantages of PL/SQL Subprograms
- •Understanding PL/SQL Procedures
- •Understanding PL/SQL Functions
- •Using the RETURN Statement
- •Declaring Nested PL/SQL Subprograms
- •Passing Parameters to PL/SQL Subprograms
- •Actual Versus Formal Subprogram Parameters
- •Using Positional, Named, or Mixed Notation for Subprogram Parameters
- •Specifying Subprogram Parameter Modes
- •Using Default Values for Subprogram Parameters
- •Overloading Subprogram Names
- •Guidelines for Overloading with Numeric Types
- •Restrictions on Overloading
- •How Subprogram Calls Are Resolved
- •How Overloading Works with Inheritance
- •Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
- •Advantages of Invoker's Rights
- •Specifying the Privileges for a Subprogram with the AUTHID Clause
- •Who Is the Current User During Subprogram Execution?
- •How External References Are Resolved in Invoker's Rights Subprograms
- •Overriding Default Name Resolution in Invoker's Rights Subprograms
- •Granting Privileges on Invoker's Rights Subprograms
- •Using Roles with Invoker's Rights Subprograms
- •Using Views and Database Triggers with Invoker's Rights Subprograms
- •Using Database Links with Invoker's Rights Subprograms
- •Using Object Types with Invoker's Rights Subprograms
- •Using Recursion with PL/SQL
- •What Is a Recursive Subprogram?
- •Calling External Subprograms
- •Creating Dynamic Web Pages with PL/SQL Server Pages
- •Controlling Side Effects of PL/SQL Subprograms
- •Understanding Subprogram Parameter Aliasing
- •9 Using PL/SQL Packages
- •What Is a PL/SQL Package?
- •What Goes In a PL/SQL Package?
- •Example of a PL/SQL Package
- •Advantages of PL/SQL Packages
- •Understanding The Package Specification
- •Referencing Package Contents
- •Understanding The Package Body
- •Some Examples of Package Features
- •Private Versus Public Items in Packages
- •Overloading Packaged Subprograms
- •How Package STANDARD Defines the PL/SQL Environment
- •About the DBMS_ALERT Package
- •About the DBMS_OUTPUT Package
- •About the DBMS_PIPE Package
- •About the UTL_FILE Package
- •About the UTL_HTTP Package
- •Guidelines for Writing Packages
- •Separating Cursor Specs and Bodies with Packages
- •10 Handling PL/SQL Errors
- •Overview of PL/SQL Runtime Error Handling
- •Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
- •Advantages of PL/SQL Exceptions
- •Summary of Predefined PL/SQL Exceptions
- •Defining Your Own PL/SQL Exceptions
- •Declaring PL/SQL Exceptions
- •Scope Rules for PL/SQL Exceptions
- •Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
- •How PL/SQL Exceptions Are Raised
- •Raising Exceptions with the RAISE Statement
- •How PL/SQL Exceptions Propagate
- •Reraising a PL/SQL Exception
- •Handling Raised PL/SQL Exceptions
- •Handling Exceptions Raised in Declarations
- •Handling Exceptions Raised in Handlers
- •Branching to or from an Exception Handler
- •Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
- •Catching Unhandled Exceptions
- •Tips for Handling PL/SQL Errors
- •Continuing after an Exception Is Raised
- •Retrying a Transaction
- •Using Locator Variables to Identify Exception Locations
- •Overview of PL/SQL Compile-Time Warnings
- •PL/SQL Warning Categories
- •Controlling PL/SQL Warning Messages
- •Using the DBMS_WARNING Package
- •11 Tuning PL/SQL Applications for Performance
- •How PL/SQL Optimizes Your Programs
- •When to Tune PL/SQL Code
- •Guidelines for Avoiding PL/SQL Performance Problems
- •Avoiding CPU Overhead in PL/SQL Code
- •Avoiding Memory Overhead in PL/SQL Code
- •Profiling and Tracing PL/SQL Programs
- •Using The Trace API: Package DBMS_TRACE
- •Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)
- •Using the FORALL Statement
- •Retrieving Query Results into Collections with the BULK COLLECT Clause
- •Writing Computation-Intensive Programs in PL/SQL
- •Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
- •Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
- •Restrictions on NOCOPY
- •Compiling PL/SQL Code for Native Execution
- •Setting Up Transformation Pipelines with Table Functions
- •Overview of Table Functions
- •Using Pipelined Table Functions for Transformations
- •Writing a Pipelined Table Function
- •Returning Results from Table Functions
- •Pipelining Data Between PL/SQL Table Functions
- •Querying Table Functions
- •Optimizing Multiple Calls to Table Functions
- •Fetching from the Results of Table Functions
- •Passing Data with Cursor Variables
- •Performing DML Operations Inside Table Functions
- •Performing DML Operations on Table Functions
- •Handling Exceptions in Table Functions
- •12 Using PL/SQL Object Types
- •Overview of PL/SQL Object Types
- •What Is an Object Type?
- •Why Use Object Types?
- •Structure of an Object Type
- •Components of an Object Type
- •What Languages can I Use for Methods of Object Types?
- •How Object Types Handle the SELF Parameter
- •Overloading
- •Changing Attributes and Methods of an Existing Object Type (Type Evolution)
- •Defining Object Types
- •Overview of PL/SQL Type Inheritance
- •Declaring and Initializing Objects
- •Declaring Objects
- •Initializing Objects
- •How PL/SQL Treats Uninitialized Objects
- •Accessing Object Attributes
- •Defining Object Constructors
- •Calling Object Constructors
- •Calling Object Methods
- •Sharing Objects through the REF Modifier
- •Manipulating Objects through SQL
- •Selecting Objects
- •Inserting Objects
- •Updating Objects
- •Deleting Objects
- •13 PL/SQL Language Elements
- •Assignment Statement
- •AUTONOMOUS_TRANSACTION Pragma
- •Blocks
- •CASE Statement
- •CLOSE Statement
- •Collection Methods
- •Collections
- •Comments
- •COMMIT Statement
- •Constants and Variables
- •Cursor Attributes
- •Cursor Variables
- •Cursors
- •DELETE Statement
- •EXCEPTION_INIT Pragma
- •Exceptions
- •EXECUTE IMMEDIATE Statement
- •EXIT Statement
- •Expressions
- •FETCH Statement
- •FORALL Statement
- •Functions
- •GOTO Statement
- •IF Statement
- •INSERT Statement
- •Literals
- •LOCK TABLE Statement
- •LOOP Statements
- •MERGE Statement
- •NULL Statement
- •Object Types
- •OPEN Statement
- •OPEN-FOR Statement
- •OPEN-FOR-USING Statement
- •Packages
- •Procedures
- •RAISE Statement
- •Records
- •RESTRICT_REFERENCES Pragma
- •RETURN Statement
- •ROLLBACK Statement
- •%ROWTYPE Attribute
- •SAVEPOINT Statement
- •SCN_TO_TIMESTAMP Function
- •SELECT INTO Statement
- •SERIALLY_REUSABLE Pragma
- •SET TRANSACTION Statement
- •SQL Cursor
- •SQLCODE Function
- •SQLERRM Function
- •TIMESTAMP_TO_SCN Function
- •%TYPE Attribute
- •UPDATE Statement
- •Where to Find PL/SQL Sample Programs
- •Exercises for the Reader
- •Assigning Character Values
- •Comparing Character Values
- •Inserting Character Values
- •Selecting Character Values
- •Advantages of Wrapping PL/SQL Procedures
- •Running the PL/SQL Wrap Utility
- •Input and Output Files for the PL/SQL Wrap Utility
- •Limitations of the PL/SQL Wrap Utility
- •What Is Name Resolution?
- •Examples of Qualified Names and Dot Notation
- •Differences in Name Resolution Between SQL and PL/SQL
- •Understanding Capture
- •Inner Capture
- •Same-Scope Capture
- •Outer Capture
- •Avoiding Inner Capture in DML Statements
- •Qualifying References to Object Attributes and Methods
- •Calling Parameterless Subprograms and Methods
- •Name Resolution for SQL Versus PL/SQL
- •When Should I Use Bind Variables with PL/SQL?
- •When Do I Use or Omit the Semicolon with Dynamic SQL?
- •How Can I Use Regular Expressions with PL/SQL?
- •How Do I Continue After a PL/SQL Exception?
- •How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
- •How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
- •What Can I Do with Objects and Object Types in PL/SQL?
- •How Do I Create a PL/SQL Procedure?
- •How Do I Input or Output Data with PL/SQL?
- •How Do I Perform a Case-Insensitive Query?
- •Index
- •Symbols
Какую работу нужно написать?

Guidelines for Avoiding PL/SQL Performance Problems
■Programs that do a lot of mathematical calculations. You will want to investigate the datatypes PLS_INTEGER, BINARY_FLOAT, and BINARY_DOUBLE.
■Functions that are called from PL/SQL queries, where the functions might be executed millions of times. You will want to look at all performance features to make the function as efficient as possible, and perhaps a function-based index to precompute the results for each row and save on query time.
■Programs that spend a lot of time processing INSERT, UPDATE, or DELETE statements, or looping through query results. You will want to investigate the FORALL statement for issuing DML, and the BULK COLLECT INTO and
RETURNING BULK COLLECT INTO clauses for queries.
■Older code that does not take advantage of recent PL/SQL language features. (With the many performance improvements in Oracle Database 10g, any code from earlier releases is a candidate for tuning.)
■Any program that spends a lot of time doing PL/SQL processing, as opposed to issuing DDL statements like CREATE TABLE that are just passed directly to SQL. You will want to investigate native compilation. Because many built-in database features use PL/SQL, you can apply this tuning feature to an entire database to improve performance in many areas, not just your own code.
Before starting any tuning effort, benchmark the current system and measure how long particular subprograms take. PL/SQL in Oracle Database 10g includes many automatic optimizations, so you might see performance improvements without doing any tuning.
Guidelines for Avoiding PL/SQL Performance Problems
When a PL/SQL-based application performs poorly, it is often due to badly written SQL statements, poor programming practices, inattention to PL/SQL basics, or misuse of shared memory.
Avoiding CPU Overhead in PL/SQL Code
Make SQL Statements as Efficient as Possible
PL/SQL programs look relatively simple because most of the work is done by SQL statements. Slow SQL statements are the main reason for slow execution.
If SQL statements are slowing down your program:
■Make sure you have appropriate indexes. There are different kinds of indexes for different situations. Your index strategy might be different depending on the sizes of various tables in a query, the distribution of data in each query, and the columns used in the WHERE clauses.
■Make sure you have up-to-date statistics on all the tables, using the subprograms in the DBMS_STATS package.
■Analyze the execution plans and performance of the SQL statements, using:
■EXPLAIN PLAN statement
■SQL Trace facility with TKPROF utility
■Oracle Trace facility
■Rewrite the SQL statements if necessary. For example, query hints can avoid problems such as unnecessary full-table scans.
11-2 PL/SQL User's Guide and Reference

Guidelines for Avoiding PL/SQL Performance Problems
For more information about these methods, see Oracle Database Performance Tuning Guide.
Some PL/SQL features also help improve the performance of SQL statements:
■If you are running SQL statements inside a PL/SQL loop, look at the FORALL statement as a way to replace loops of INSERT, UPDATE, and DELETE statements.
■If you are looping through the result set of a query, look at the BULK COLLECT clause of the SELECT INTO statement as a way to bring the entire result set into memory in a single operation.
Make Function Calls as Efficient as Possible
Badly written subprograms (for example, a slow sort or search function) can harm performance. Avoid unnecessary calls to subprograms, and optimize their code:
■If a function is called within a SQL query, you can cache the function value for each row by creating a function-based index on the table in the query. The CREATE INDEX statement might take a while, but queries can be much faster.
■If a column is passed to a function within an SQL query, the query cannot use regular indexes on that column, and the function might be called for every row in a (potentially very large) table. Consider nesting the query so that the inner query filters the results to a small number of rows, and the outer query calls the function only a few times:
BEGIN
--Inefficient, calls my_function for every row.
FOR item IN (SELECT DISTINCT(SQRT(department_id)) col_alias FROM employees) LOOP
dbms_output.put_line(item.col_alias); END LOOP;
--Efficient, only calls function once for each distinct value. FOR item IN
( SELECT SQRT(department_id) col_alias FROM
( SELECT DISTINCT department_id FROM employees)
)
LOOP
dbms_output.put_line(item.col_alias); END LOOP;
END;
/
If you use OUT or IN OUT parameters, PL/SQL adds some performance overhead to ensure correct behavior in case of exceptions (assigning a value to the OUT parameter, then exiting the subprogram because of an unhandled exception, so that the OUT parameter keeps its original value).
If your program does not depend on OUT parameters keeping their values in such situations, you can add the NOCOPY keyword to the parameter declarations, so the parameters are declared OUT NOCOPY or IN OUT NOCOPY.
This technique can give significant speedup if you are passing back large amounts of data in OUT parameters, such as collections, big VARCHAR2 values, or LOBs.
This technique also applies to member subprograms of object types. If these subprograms modify attributes of the object type, all the attributes are copied when the subprogram ends. To avoid this overhead, you can explicitly declare the first parameter of the member subprogram as SELF IN OUT NOCOPY, instead of relying on PL/SQL's implicit declaration SELF IN OUT.
Tuning PL/SQL Applications for Performance 11-3

Guidelines for Avoiding PL/SQL Performance Problems
Make Loops as Efficient as Possible
Because PL/SQL applications are often built around loops, it is important to optimize the loop itself and the code inside the loop:
■Move initializations or computations outside the loop if possible.
■To issue a series of DML statements, replace loop constructs with FORALL statements.
■To loop through a result set and store the values, use the BULK COLLECT clause on the query to bring the query results into memory in one operation.
■If you have to loop through a result set more than once, or issue other queries as you loop through a result set, you can probably enhance the original query to give you exactly the results you want. Some query operators to explore include UNION,
INTERSECT, MINUS, and CONNECT BY.
■You can also nest one query inside another (known as a subselect) to do the filtering and sorting in multiple stages. For example, instead of calling a PL/SQL function in the inner WHERE clause (which might call the function once for each row of the table), you can filter the result set to a small set of rows in the inner query, and call the function in the outer query.
Don't Duplicate Built-in String Functions
PL/SQL provides many highly optimized string functions such as REPLACE, TRANSLATE, SUBSTR, INSTR, RPAD, and LTRIM. The built-in functions use low-level code that is more efficient than regular PL/SQL.
If you use PL/SQL string functions to search for regular expressions, consider using the built-in regular expression functions, such as REGEXP_SUBSTR.
Reorder Conditional Tests to Put the Least Expensive First
PL/SQL stops evaluating a logical expression as soon as the result can be determined (known as short-circuit evaluation).
When evaluating multiple conditions separated by AND or OR, put the least expensive ones first. For example, check the values of PL/SQL variables before testing function return values, because PL/SQL might be able to skip calling the functions.
Minimize Datatype Conversions
At run time, PL/SQL converts between different datatypes automatically. For example, assigning a PLS_INTEGER variable to a NUMBER variable results in a conversion because their internal representations are different.
Avoiding implicit conversions can improve performance. Use literals of the appropriate types: character literals in character expressions, decimal numbers in number expressions, and so on.
In the example below, the integer literal 15 must be converted to an Oracle NUMBER before the addition. The floating-point literal 15.0 is represented as a NUMBER, avoiding the need for a conversion.
DECLARE
n NUMBER; c CHAR(5);
BEGIN
n := n + 15; -- converted implicitly; slow n := n + 15.0; -- not converted; fast
c := 25; -- converted implicitly; slow
11-4 PL/SQL User's Guide and Reference

Guidelines for Avoiding PL/SQL Performance Problems
c := TO_CHAR(25); -- converted explicitly; still slow
c := '25'; |
-- not converted; fast |
END; |
|
/ |
|
Minimizing conversions might mean changing the types of your variables, or even working backward and designing your tables with different datatypes. Or, you might convert data once (such as from an INTEGER column to a PLS_INTEGER variable) and use the PL/SQL type consistently after that.
Use PLS_INTEGER or BINARY_INTEGER for Integer Arithmetic
When you need to declare a local integer variable, use the datatype PLS_INTEGER, which is the most efficient integer type. PLS_INTEGER values require less storage than INTEGER or NUMBER values, and PLS_INTEGER operations use machine arithmetic.
The BINARY_INTEGER datatype is just as efficient as PLS_INTEGER for any new code, but if you are running the same code on Oracle9i or Oracle8i databases, PLS_INTEGER is faster.
The datatype NUMBER and its subtypes are represented in a special internal format, designed for portability and arbitrary scale and precision, not performance. Even the subtype INTEGER is treated as a floating-point number with nothing after the decimal point. Operations on NUMBER or INTEGER variables require calls to library routines.
Avoid constrained subtypes such as INTEGER, NATURAL, NATURALN, POSITIVE, POSITIVEN, and SIGNTYPE in performance-critical code. Variables of these types require extra checking at run time, each time they are used in a calculation.
Use BINARY_FLOAT and BINARY_DOUBLE for Floating-Point Arithmetic
The datatype NUMBER and its subtypes are represented in a special internal format, designed for portability and arbitrary scale and precision, not performance. Operations on NUMBER or INTEGER variables require calls to library routines.
The BINARY_FLOAT and BINARY_DOUBLE types can use native machine arithmetic instructions, and are more efficient for number-crunching applications such as scientific processing. They also require less space in the database.
These types do not always represent fractional values precisely, and handle rounding differently than the NUMBER types. These types are less suitable for financial code where accuracy is critical.
Avoiding Memory Overhead in PL/SQL Code
Be Generous When Declaring Sizes for VARCHAR2 Variables
You might need to allocate large VARCHAR2 variables when you are not sure how big an expression result will be. You can actually conserve memory by declaring VARCHAR2 variables with large sizes, such as 32000, rather than estimating just a little on the high side, such as by specifying a size such as 256 or 1000. PL/SQL has an optimization that makes it easy to avoid overflow problems and still conserve memory. Specify a size of 2000 or more characters for the VARCHAR2 variable; PL/SQL waits until you assign the variable, then only allocates as much storage as needed.
Group Related Subprograms into Packages
When you call a packaged subprogram for the first time, the whole package is loaded into the shared memory pool. Subsequent calls to related subprograms in the package
Tuning PL/SQL Applications for Performance 11-5