- •Contents
- •Send Us Your Comments
- •Preface
- •What's New in PL/SQL?
- •1 Overview of PL/SQL
- •Advantages of PL/SQL
- •Tight Integration with SQL
- •Support for SQL
- •Better Performance
- •Higher Productivity
- •Full Portability
- •Tight Security
- •Support for Object-Oriented Programming
- •Understanding the Main Features of PL/SQL
- •Block Structure
- •Variables and Constants
- •Processing Queries with PL/SQL
- •Declaring PL/SQL Variables
- •Control Structures
- •Writing Reusable PL/SQL Code
- •Data Abstraction
- •Error Handling
- •PL/SQL Architecture
- •In the Oracle Database Server
- •In Oracle Tools
- •2 Fundamentals of the PL/SQL Language
- •Character Set
- •Lexical Units
- •Delimiters
- •Literals
- •Comments
- •Declarations
- •Using DEFAULT
- •Using NOT NULL
- •Using the %TYPE Attribute
- •Using the %ROWTYPE Attribute
- •Restrictions on Declarations
- •PL/SQL Naming Conventions
- •Scope and Visibility of PL/SQL Identifiers
- •Assigning Values to Variables
- •Assigning Boolean Values
- •Assigning a SQL Query Result to a PL/SQL Variable
- •PL/SQL Expressions and Comparisons
- •Logical Operators
- •Boolean Expressions
- •CASE Expressions
- •Handling Null Values in Comparisons and Conditional Statements
- •Summary of PL/SQL Built-In Functions
- •3 PL/SQL Datatypes
- •PL/SQL Number Types
- •PL/SQL Character and String Types
- •PL/SQL National Character Types
- •PL/SQL LOB Types
- •PL/SQL Boolean Types
- •PL/SQL Date, Time, and Interval Types
- •Datetime and Interval Arithmetic
- •Avoiding Truncation Problems Using Date and Time Subtypes
- •Overview of PL/SQL Subtypes
- •Using Subtypes
- •Converting PL/SQL Datatypes
- •Explicit Conversion
- •Implicit Conversion
- •Choosing Between Implicit and Explicit Conversion
- •DATE Values
- •RAW and LONG RAW Values
- •4 Using PL/SQL Control Structures
- •Overview of PL/SQL Control Structures
- •Testing Conditions: IF and CASE Statements
- •Using the IF-THEN Statement
- •Using the IF-THEN-ELSE Statement
- •Using the IF-THEN-ELSIF Statement
- •Using the CASE Statement
- •Guidelines for PL/SQL Conditional Statements
- •Controlling Loop Iterations: LOOP and EXIT Statements
- •Using the LOOP Statement
- •Using the EXIT Statement
- •Using the EXIT-WHEN Statement
- •Labeling a PL/SQL Loop
- •Using the WHILE-LOOP Statement
- •Using the FOR-LOOP Statement
- •Sequential Control: GOTO and NULL Statements
- •Using the GOTO Statement
- •Using the NULL Statement
- •5 Using PL/SQL Collections and Records
- •What Is a Collection?
- •Understanding Nested Tables
- •Understanding Varrays
- •Understanding Associative Arrays (Index-By Tables)
- •How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays
- •Choosing Which PL/SQL Collection Types to Use
- •Choosing Between Nested Tables and Associative Arrays
- •Choosing Between Nested Tables and Varrays
- •Defining Collection Types
- •Declaring PL/SQL Collection Variables
- •Initializing and Referencing Collections
- •Referencing Collection Elements
- •Assigning Collections
- •Comparing Collections
- •Using PL/SQL Collections with SQL Statements
- •Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
- •Manipulating Individual Collection Elements with SQL
- •Using Multilevel Collections
- •Using Collection Methods
- •Checking If a Collection Element Exists (EXISTS Method)
- •Counting the Elements in a Collection (COUNT Method)
- •Checking the Maximum Size of a Collection (LIMIT Method)
- •Finding the First or Last Collection Element (FIRST and LAST Methods)
- •Looping Through Collection Elements (PRIOR and NEXT Methods)
- •Increasing the Size of a Collection (EXTEND Method)
- •Decreasing the Size of a Collection (TRIM Method)
- •Deleting Collection Elements (DELETE Method)
- •Applying Methods to Collection Parameters
- •Avoiding Collection Exceptions
- •What Is a PL/SQL Record?
- •Using Records as Procedure Parameters and Function Return Values
- •Assigning Values to Records
- •Comparing Records
- •Inserting PL/SQL Records into the Database
- •Updating the Database with PL/SQL Record Values
- •Restrictions on Record Inserts/Updates
- •Querying Data into Collections of Records
- •6 Performing SQL Operations from PL/SQL
- •Overview of SQL Support in PL/SQL
- •Data Manipulation
- •Transaction Control
- •SQL Functions
- •SQL Pseudocolumns
- •SQL Operators
- •Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)
- •Overview of Implicit Cursor Attributes
- •Using PL/SQL Records in SQL INSERT and UPDATE Statements
- •Issuing Queries from PL/SQL
- •Selecting At Most One Row: SELECT INTO Statement
- •Selecting Multiple Rows: BULK COLLECT Clause
- •Looping Through Multiple Rows: Cursor FOR Loop
- •Performing Complicated Query Processing: Explicit Cursors
- •Querying Data with PL/SQL
- •Querying Data with PL/SQL: Implicit Cursor FOR Loop
- •Querying Data with PL/SQL: Explicit Cursor FOR Loops
- •Overview of Explicit Cursors
- •Using Subqueries
- •Using Correlated Subqueries
- •Writing Maintainable PL/SQL Queries
- •Using Cursor Attributes
- •Overview of Explicit Cursor Attributes
- •Using Cursor Variables (REF CURSORs)
- •What Are Cursor Variables (REF CURSORs)?
- •Why Use Cursor Variables?
- •Declaring REF CURSOR Types and Cursor Variables
- •Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
- •Avoiding Errors with Cursor Variables
- •Restrictions on Cursor Variables
- •Using Cursor Expressions
- •Restrictions on Cursor Expressions
- •Example of Cursor Expressions
- •Constructing REF CURSORs with Cursor Subqueries
- •Overview of Transaction Processing in PL/SQL
- •Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
- •How Oracle Does Implicit Rollbacks
- •Ending Transactions
- •Setting Transaction Properties with SET TRANSACTION
- •Overriding Default Locking
- •Doing Independent Units of Work with Autonomous Transactions
- •Advantages of Autonomous Transactions
- •Controlling Autonomous Transactions
- •Using Autonomous Triggers
- •Calling Autonomous Functions from SQL
- •7 Performing SQL Operations with Native Dynamic SQL
- •What Is Dynamic SQL?
- •Why Use Dynamic SQL?
- •Using the EXECUTE IMMEDIATE Statement
- •Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings
- •Building a Dynamic Query with Dynamic SQL
- •Examples of Dynamic SQL for Records, Objects, and Collections
- •Using Bulk Dynamic SQL
- •Using Dynamic SQL with Bulk SQL
- •Examples of Dynamic Bulk Binds
- •Guidelines for Dynamic SQL
- •When to Use or Omit the Semicolon with Dynamic SQL
- •Improving Performance of Dynamic SQL with Bind Variables
- •Passing Schema Object Names As Parameters
- •Using Duplicate Placeholders with Dynamic SQL
- •Using Cursor Attributes with Dynamic SQL
- •Passing Nulls to Dynamic SQL
- •Using Database Links with Dynamic SQL
- •Using Invoker Rights with Dynamic SQL
- •Using Pragma RESTRICT_REFERENCES with Dynamic SQL
- •Avoiding Deadlocks with Dynamic SQL
- •Backward Compatibility of the USING Clause
- •8 Using PL/SQL Subprograms
- •What Are Subprograms?
- •Advantages of PL/SQL Subprograms
- •Understanding PL/SQL Procedures
- •Understanding PL/SQL Functions
- •Using the RETURN Statement
- •Declaring Nested PL/SQL Subprograms
- •Passing Parameters to PL/SQL Subprograms
- •Actual Versus Formal Subprogram Parameters
- •Using Positional, Named, or Mixed Notation for Subprogram Parameters
- •Specifying Subprogram Parameter Modes
- •Using Default Values for Subprogram Parameters
- •Overloading Subprogram Names
- •Guidelines for Overloading with Numeric Types
- •Restrictions on Overloading
- •How Subprogram Calls Are Resolved
- •How Overloading Works with Inheritance
- •Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
- •Advantages of Invoker's Rights
- •Specifying the Privileges for a Subprogram with the AUTHID Clause
- •Who Is the Current User During Subprogram Execution?
- •How External References Are Resolved in Invoker's Rights Subprograms
- •Overriding Default Name Resolution in Invoker's Rights Subprograms
- •Granting Privileges on Invoker's Rights Subprograms
- •Using Roles with Invoker's Rights Subprograms
- •Using Views and Database Triggers with Invoker's Rights Subprograms
- •Using Database Links with Invoker's Rights Subprograms
- •Using Object Types with Invoker's Rights Subprograms
- •Using Recursion with PL/SQL
- •What Is a Recursive Subprogram?
- •Calling External Subprograms
- •Creating Dynamic Web Pages with PL/SQL Server Pages
- •Controlling Side Effects of PL/SQL Subprograms
- •Understanding Subprogram Parameter Aliasing
- •9 Using PL/SQL Packages
- •What Is a PL/SQL Package?
- •What Goes In a PL/SQL Package?
- •Example of a PL/SQL Package
- •Advantages of PL/SQL Packages
- •Understanding The Package Specification
- •Referencing Package Contents
- •Understanding The Package Body
- •Some Examples of Package Features
- •Private Versus Public Items in Packages
- •Overloading Packaged Subprograms
- •How Package STANDARD Defines the PL/SQL Environment
- •About the DBMS_ALERT Package
- •About the DBMS_OUTPUT Package
- •About the DBMS_PIPE Package
- •About the UTL_FILE Package
- •About the UTL_HTTP Package
- •Guidelines for Writing Packages
- •Separating Cursor Specs and Bodies with Packages
- •10 Handling PL/SQL Errors
- •Overview of PL/SQL Runtime Error Handling
- •Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
- •Advantages of PL/SQL Exceptions
- •Summary of Predefined PL/SQL Exceptions
- •Defining Your Own PL/SQL Exceptions
- •Declaring PL/SQL Exceptions
- •Scope Rules for PL/SQL Exceptions
- •Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
- •How PL/SQL Exceptions Are Raised
- •Raising Exceptions with the RAISE Statement
- •How PL/SQL Exceptions Propagate
- •Reraising a PL/SQL Exception
- •Handling Raised PL/SQL Exceptions
- •Handling Exceptions Raised in Declarations
- •Handling Exceptions Raised in Handlers
- •Branching to or from an Exception Handler
- •Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
- •Catching Unhandled Exceptions
- •Tips for Handling PL/SQL Errors
- •Continuing after an Exception Is Raised
- •Retrying a Transaction
- •Using Locator Variables to Identify Exception Locations
- •Overview of PL/SQL Compile-Time Warnings
- •PL/SQL Warning Categories
- •Controlling PL/SQL Warning Messages
- •Using the DBMS_WARNING Package
- •11 Tuning PL/SQL Applications for Performance
- •How PL/SQL Optimizes Your Programs
- •When to Tune PL/SQL Code
- •Guidelines for Avoiding PL/SQL Performance Problems
- •Avoiding CPU Overhead in PL/SQL Code
- •Avoiding Memory Overhead in PL/SQL Code
- •Profiling and Tracing PL/SQL Programs
- •Using The Trace API: Package DBMS_TRACE
- •Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)
- •Using the FORALL Statement
- •Retrieving Query Results into Collections with the BULK COLLECT Clause
- •Writing Computation-Intensive Programs in PL/SQL
- •Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
- •Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
- •Restrictions on NOCOPY
- •Compiling PL/SQL Code for Native Execution
- •Setting Up Transformation Pipelines with Table Functions
- •Overview of Table Functions
- •Using Pipelined Table Functions for Transformations
- •Writing a Pipelined Table Function
- •Returning Results from Table Functions
- •Pipelining Data Between PL/SQL Table Functions
- •Querying Table Functions
- •Optimizing Multiple Calls to Table Functions
- •Fetching from the Results of Table Functions
- •Passing Data with Cursor Variables
- •Performing DML Operations Inside Table Functions
- •Performing DML Operations on Table Functions
- •Handling Exceptions in Table Functions
- •12 Using PL/SQL Object Types
- •Overview of PL/SQL Object Types
- •What Is an Object Type?
- •Why Use Object Types?
- •Structure of an Object Type
- •Components of an Object Type
- •What Languages can I Use for Methods of Object Types?
- •How Object Types Handle the SELF Parameter
- •Overloading
- •Changing Attributes and Methods of an Existing Object Type (Type Evolution)
- •Defining Object Types
- •Overview of PL/SQL Type Inheritance
- •Declaring and Initializing Objects
- •Declaring Objects
- •Initializing Objects
- •How PL/SQL Treats Uninitialized Objects
- •Accessing Object Attributes
- •Defining Object Constructors
- •Calling Object Constructors
- •Calling Object Methods
- •Sharing Objects through the REF Modifier
- •Manipulating Objects through SQL
- •Selecting Objects
- •Inserting Objects
- •Updating Objects
- •Deleting Objects
- •13 PL/SQL Language Elements
- •Assignment Statement
- •AUTONOMOUS_TRANSACTION Pragma
- •Blocks
- •CASE Statement
- •CLOSE Statement
- •Collection Methods
- •Collections
- •Comments
- •COMMIT Statement
- •Constants and Variables
- •Cursor Attributes
- •Cursor Variables
- •Cursors
- •DELETE Statement
- •EXCEPTION_INIT Pragma
- •Exceptions
- •EXECUTE IMMEDIATE Statement
- •EXIT Statement
- •Expressions
- •FETCH Statement
- •FORALL Statement
- •Functions
- •GOTO Statement
- •IF Statement
- •INSERT Statement
- •Literals
- •LOCK TABLE Statement
- •LOOP Statements
- •MERGE Statement
- •NULL Statement
- •Object Types
- •OPEN Statement
- •OPEN-FOR Statement
- •OPEN-FOR-USING Statement
- •Packages
- •Procedures
- •RAISE Statement
- •Records
- •RESTRICT_REFERENCES Pragma
- •RETURN Statement
- •ROLLBACK Statement
- •%ROWTYPE Attribute
- •SAVEPOINT Statement
- •SCN_TO_TIMESTAMP Function
- •SELECT INTO Statement
- •SERIALLY_REUSABLE Pragma
- •SET TRANSACTION Statement
- •SQL Cursor
- •SQLCODE Function
- •SQLERRM Function
- •TIMESTAMP_TO_SCN Function
- •%TYPE Attribute
- •UPDATE Statement
- •Where to Find PL/SQL Sample Programs
- •Exercises for the Reader
- •Assigning Character Values
- •Comparing Character Values
- •Inserting Character Values
- •Selecting Character Values
- •Advantages of Wrapping PL/SQL Procedures
- •Running the PL/SQL Wrap Utility
- •Input and Output Files for the PL/SQL Wrap Utility
- •Limitations of the PL/SQL Wrap Utility
- •What Is Name Resolution?
- •Examples of Qualified Names and Dot Notation
- •Differences in Name Resolution Between SQL and PL/SQL
- •Understanding Capture
- •Inner Capture
- •Same-Scope Capture
- •Outer Capture
- •Avoiding Inner Capture in DML Statements
- •Qualifying References to Object Attributes and Methods
- •Calling Parameterless Subprograms and Methods
- •Name Resolution for SQL Versus PL/SQL
- •When Should I Use Bind Variables with PL/SQL?
- •When Do I Use or Omit the Semicolon with Dynamic SQL?
- •How Can I Use Regular Expressions with PL/SQL?
- •How Do I Continue After a PL/SQL Exception?
- •How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
- •How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
- •What Can I Do with Objects and Object Types in PL/SQL?
- •How Do I Create a PL/SQL Procedure?
- •How Do I Input or Output Data with PL/SQL?
- •How Do I Perform a Case-Insensitive Query?
- •Index
- •Symbols
AUTONOMOUS_TRANSACTION Pragma
AUTONOMOUS_TRANSACTION Pragma
The AUTONOMOUS_TRANSACTION pragma changes the way a subprogram works within a transaction. A subprogram marked with this pragma can do SQL operations and commit or roll back those operations, without committing or rolling back the data in the main transaction. For more information, see "Doing Independent Units of Work with Autonomous Transactions" on page 6-35.
Syntax
autonomous_transaction_pragma
PRAGMA AUTONOMOUS_TRANSACTION ;
Keyword and Parameter Description
PRAGMA
Signifies that the statement is a pragma (compiler directive). Pragmas are processed at compile time, not at run time. They pass information to the compiler.
Usage Notes
You can apply this pragma to:
■
■
■
■
Top-level (not nested) anonymous PL/SQL blocks
Local, standalone, and packaged functions and procedures
Methods of a SQL object type
Database triggers
You cannot apply this pragma to an entire package or an entire an object type. Instead, you can apply the pragma to each packaged subprogram or object method.
You can code the pragma anywhere in the declarative section. For readability, code the pragma at the top of the section.
Once started, an autonomous transaction is fully independent. It shares no locks, resources, or commit-dependencies with the main transaction. You can log events, increment retry counters, and so on, even if the main transaction rolls back.
Unlike regular triggers, autonomous triggers can contain transaction control statements such as COMMIT and ROLLBACK, and can issue DDL statements (such as
CREATE and DROP) through the EXECUTE IMMEDIATE statement.
Changes made by an autonomous transaction become visible to other transactions when the autonomous transaction commits. The changes also become visible to the main transaction when it resumes, but only if its isolation level is set to READ COMMITTED (the default). If you set the isolation level of the main transaction to SERIALIZABLE, changes made by its autonomous transactions are not visible to the main transaction when it resumes.
In the main transaction, rolling back to a savepoint located before the call to the autonomous subprogram does not roll back the autonomous transaction. Remember, autonomous transactions are fully independent of the main transaction.
If an autonomous transaction attempts to access a resource held by the main transaction (which cannot resume until the autonomous routine exits), a deadlock can
13-6 PL/SQL User's Guide and Reference
AUTONOMOUS_TRANSACTION Pragma
occur. Oracle raises an exception in the autonomous transaction, which is rolled back if the exception goes unhandled.
If you try to exit an active autonomous transaction without committing or rolling back, Oracle raises an exception. If the exception goes unhandled, or if the transaction ends because of some other unhandled exception, the transaction is rolled back.
Examples
The following example marks a packaged function as autonomous:
CREATE PACKAGE banking AS
FUNCTION balance (acct_id INTEGER) RETURN REAL; END banking;
/
CREATE PACKAGE BODY banking AS
FUNCTION balance (acct_id INTEGER) RETURN REAL IS PRAGMA AUTONOMOUS_TRANSACTION;
my_bal REAL; BEGIN
NULL;
END;
END banking;
/
DROP PACKAGE banking;
The following example lets a trigger issue transaction control statements:
CREATE TABLE anniversaries AS
SELECT DISTINCT TRUNC(hire_date) anniversary FROM employees;
ALTER TABLE anniversaries ADD PRIMARY KEY (anniversary);
CREATE TRIGGER anniversary_trigger
BEFORE INSERT ON employees FOR EACH ROW
DECLARE
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
INSERT INTO anniversaries VALUES(TRUNC(:new.hire_date));
--Only commits the preceding INSERT, not the INSERT that fired
--the trigger. COMMIT; EXCEPTION
--If someone else was hired on the same day, we get an exception
--because of duplicate values. That's OK, no action needed. WHEN OTHERS THEN NULL;
END;
/
DROP TRIGGER anniversary_trigger;
DROP TABLE anniversaries;
Related Topics
EXCEPTION_INIT Pragma, RESTRICT_REFERENCES Pragma,
SERIALLY_REUSABLE Pragma
PL/SQL Language Elements 13-7
Blocks
Blocks
The basic program unit in PL/SQL is the block. A PL/SQL block is defined by the keywords DECLARE, BEGIN, EXCEPTION, and END. These keywords partition the block into a declarative part, an executable part, and an exception-handling part. Only the executable part is required. You can nest a block within another block wherever you can place an executable statement. For more information, see "Block Structure" on page 1-4 and "Scope and Visibility of PL/SQL Identifiers" on page 2-14.
Syntax
plsql_block |
|
|
|
|
|
|
|
|
<< |
label_name |
>> |
|
DECLARE |
|
|
|
|
|
type_definition |
|
|
|
function_declaration |
|
|
|
|
item_declaration |
|
|
procedure_declaration |
|
|
||
BEGIN |
statement |
|
|
|
|
|
|
|
EXCEPTION |
exception_handler |
|
label_name |
|
|
|||
|
|
|
|
|
END |
|
|
; |
type_definition |
|
|
|
|
|
|
|
|
record_type_definition |
|
|
|
|
|
|
|
|
ref_cursor_type_definition |
|
|
|
|
|
|
||
table_type_definition |
|
|
|
|
|
|
|
|
subtype_definition |
|
|
|
|
|
|
|
|
varray_type_definition |
|
|
|
|
|
|
|
|
subtype_definition |
|
|
|
( |
constraint |
) |
NOT NULL |
|
|
|
|
|
|
||||
SUBTYPE |
subtype_name |
IS |
base_type |
|
|
|
; |
13-8 PL/SQL User's Guide and Reference
Blocks
item_declaration
collection_declaration constant_declaration cursor_declaration cursor_variable_declaration exception_declaration object_declaration object_ref_declaration record_declaration variable_declaration
sql_statement
commit_statement delete_statement insert_statement lock_table_statement rollback_statement
savepoint_statement
select_statement
set_transaction_statement
update_statement
PL/SQL Language Elements 13-9
Blocks
assignment_statement close_statement execute_immediate_statement exit_statement fetch_statement
forall_statement
statement
|
|
|
goto_statement |
<< |
label_name |
>> |
if_statement |
|
|
|
loop_statement |
|
|
|
null_statement |
|
|
|
open_statement |
|
|
|
open_for_statement |
|
|
|
plsql_block |
|
|
|
raise_statement |
|
|
|
return_statement |
|
|
|
sql_statement |
Keyword and Parameter Description
base_type
Any scalar or user-defined PL/SQL datatype specifier such as CHAR, DATE, or
RECORD.
BEGIN
Signals the start of the executable part of a PL/SQL block, which contains executable statements. A PL/SQL block must contain at least one executable statement (even just the NULL statement).
collection_declaration
Declares a collection (index-by table, nested table, or varray). For the syntax of collection_declaration, see "Collections" on page 13-21.
constant_declaration
Declares a constant. For the syntax of constant_declaration, see "Constants and Variables" on page 13-28.
constraint
Applies only to datatypes that can be constrained such as CHAR and NUMBER. For character datatypes, this specifies a maximum size in bytes. For numeric datatypes, this specifies a maximum precision and scale.
cursor_declaration
Declares an explicit cursor. For the syntax of cursor_declaration, see "Cursors" on page 13-38.
13-10 PL/SQL User's Guide and Reference
Blocks
cursor_variable_declaration
Declares a cursor variable. For the syntax of cursor_variable_declaration, see "Cursor Variables" on page 13-34.
DECLARE
Signals the start of the declarative part of a PL/SQL block, which contains local declarations. Items declared locally exist only within the current block and all its sub-blocks and are not visible to enclosing blocks. The declarative part of a PL/SQL block is optional. It is terminated implicitly by the keyword BEGIN, which introduces the executable part of the block.
PL/SQL does not allow forward references. You must declare an item before referencing it in any other statements. Also, you must declare subprograms at the end of a declarative section after all other program items.
END
Signals the end of a PL/SQL block. It must be the last keyword in a block. Remember, END does not signal the end of a transaction. Just as a block can span multiple transactions, a transaction can span multiple blocks.
EXCEPTION
Signals the start of the exception-handling part of a PL/SQL block. When an exception is raised, normal execution of the block stops and control transfers to the appropriate exception handler. After the exception handler completes, execution proceeds with the statement following the block.
If there is no exception handler for the raised exception in the current block, control passes to the enclosing block. This process repeats until an exception handler is found or there are no more enclosing blocks. If PL/SQL can find no exception handler for the exception, execution stops and an unhandled exception error is returned to the host environment. For more information, see Chapter 10.
exception_declaration
Declares an exception. For the syntax of exception_declaration, see "Exceptions" on page 13-45.
exception_handler
Associates an exception with a sequence of statements, which is executed when that exception is raised. For the syntax of exception_handler, see "Exceptions" on page 13-45.
function_declaration
Declares a function. For the syntax of function_declaration, see "Functions" on page 13-67.
label_name
An undeclared identifier that optionally labels a PL/SQL block. If used, label_name must be enclosed by double angle brackets and must appear at the beginning of the block. Optionally, label_name (not enclosed by angle brackets) can also appear at the end of the block.
A global identifier declared in an enclosing block can be redeclared in a sub-block, in which case the local declaration prevails and the sub-block cannot reference the global
PL/SQL Language Elements 13-11
Blocks
identifier unless you use a block label to qualify the reference, as the following example shows:
<<outer>> DECLARE
x INTEGER; BEGIN
DECLARE
x INTEGER; BEGIN
IF x = outer.x THEN -- refers to global x NULL;
END IF; END;
END outer;
/
object_declaration
Declares an instance of an object type. For the syntax of object_declaration, see "Object Types" on page 13-86.
procedure_declaration
Declares a procedure. For the syntax of procedure_declaration, see "Procedures" on page 13-104.
record_declaration
Declares a user-defined record. For the syntax of record_declaration, see "Records" on page 13-110.
statement
An executable (not declarative) statement that. A sequence of statements can include procedural statements such as RAISE, SQL statements such as UPDATE, and PL/SQL blocks.
PL/SQL statements are free format. That is, they can continue from line to line if you do not split keywords, delimiters, or literals across lines. A semicolon (;) serves as the statement terminator.
subtype_name
A user-defined subtype that was defined using any scalar or user-defined PL/SQL datatype specifier such as CHAR, DATE, or RECORD.
variable_declaration
Declares a variable. For the syntax of variable_declaration, see "Constants and Variables" on page 13-28.
PL/SQL supports a subset of SQL statements that includes data manipulation, cursor control, and transaction control statements but excludes data definition and data control statements such as ALTER, CREATE, GRANT, and REVOKE.
Example
The following PL/SQL block declares some variables, executes statements with calculations and function calls, and handles errors that might occur:
13-12 PL/SQL User's Guide and Reference
Blocks
DECLARE |
|
|
numerator |
NUMBER |
:= 22; |
denominator |
NUMBER |
:= 7; |
the_ratio |
NUMBER; |
|
BEGIN |
|
|
the_ratio := numerator/denominator; dbms_output.put_line('Ratio = ' || the_ratio);
EXCEPTION
WHEN ZERO_DIVIDE THEN
dbms_output.put_line('Divide-by-zero error: can''t divide ' || numerator || ' by ' || denominator);
WHEN OTHERS THEN dbms_output.put_line('Unexpected error.');
END;
/
Related Topics
Constants and Variables, Exceptions, Functions, Procedures
PL/SQL Language Elements 13-13